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Preface

The field of engineering that deals with the study and application of electronics and electricity is termed as
electrical engineering. This field gained recognition as one of the biggest fields of engineering during the 19th
century. Electric power has gained a foothold in the most basic activities of our lives. There is not a part of our
daily lives that is not involved with electrical power in some way or the other. There are many subdivisions of
electrical engineering like telecommunications, control systems, instrumentation and electronics, though electronics
can be termed as a field in its own right. The skills required of an electrical engineer are variable and they work
in a huge variety of industries. Computer engineering on the other hand is a discipline that combines various
fields of electrical engineering and computer science and specializes in the development of computer hardware and
software. Computer engineers can be involved in the many hardware and software facets of computing, like the
design of microprocessors and personal computers to circuit design. It can be said that this field of study focuses
on both how computer systems work as well as their integration in the larger picture. Both electrical and computer
engineering are disciplines that can be counted as the biggest and fastest growing in the range of engineering
fields that are there in the industry.

This book is an attempt to collate all current data and research on computer and electrical engineering. I am thankful
to all the contributing authors for the hard work and effort put in these researches. I also wish to acknowledge
the efforts of the publishing team who provided excellent technical assistance, whenever needed. Lastly, I wish to
thank my friends and family who have supported me at every step in my life.

Editor
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Our goal in this work is to demonstrate that detectors behave differently for different images and targets and to propose a novel
approach to proper detector selection. To choose the algorithm, we analyze image statistics, the target signature, and the target’s
physical size, but we do not need any type of ground truth. We demonstrate our ability to evaluate detectors and find the best
settings for their free parameters by comparing our results using the following stochastic algorithms for target detection: the
constrained energy minimization (CEM), generalized likelihood ratio test (GLRT), and adaptive coherence estimator (ACE)
algorithms. We test our concepts by using the dataset and scoring methodology of the Rochester Institute of Technology (RIT)
Target Detection Blind Test project. The results show that our concept correctly ranks algorithms for the particular images and

targets including in the RIT dataset.

1. Introduction

Ideally, one would like to choose a hyperspectral detection
algorithm for use in a particular scenario with the assurance
that it would be “optimal,” that is, that the type of algorithm
to be used and its free parameters would be optimized for the
particular task for which it is being considered. Of course, in
such cases, the complexity of real-world scenarios and the
difficulties of predicting the exact target signature in situ,
make it hard to believe that we can predict the optimal target
detection algorithm ahead of time. Because the responses of
these algorithms can vary depending on target placement,
we adapted the Rotman-Bar Tal Algorithm (RBTA) [1]
for comparing point target detection algorithms, used for
infrared broadband images, to the analysis of hyperspectral
imagery [2—4]. The RBTA implants targets and evaluates
the response of the detecting algorithm to their presence in
every pixel in the dataset. Indeed, our development of new

algorithms based on this tool has been validated by results
obtained by other researchers in actual field tests [5, 6].

An inherent weakness of the RBTA method is its assump-
tion that subpixel targets will each be contained within a
single pixel. In light of our recent work [7], which showed
that even very small targets can affect several pixels, here we
fine-tuned the RBTA method to account for this possibility.

Sections 2—6 describes the RBTA in detail. We show how
the simulation of target detection performance is dependent
on the spatial correlation of the pixels present in the target.

Sections 7—12 analytically considers the expected perfor-
mances of several detection algorithms under conditions of
“pixel phasing,” that is, a small target located simultaneously
in several adjacent pixels. Our improved RBTA (IRBTA) takes
into account target blurring and pixel phasing. The results
presented in Sections 13—16 show that the superiority of the
ACE algorithm and the importance of accounting for target
blurring are validated in a real data analysis based on the



RIT target detection blind test experiment. Conclusions are
presented in Section 17.

2. Determining the “Best Algorithm” for
Target Detection

Manolakis et al. [8] claimed that to identify the best
algorithm for target detection, we need datasets with reliable
ground truth spanning a diverse range of targets and
backgrounds under various scenarios, target fill factors, and
atmospheric conditions. Statistically significant numbers of
target and background pixels are necessary to construct
reliable ROC curves. Because in many cases this degree of
data confirmation is unavailable, we suggest an alternative
approach for estimating the best algorithm from among
several detectors for specific backgrounds and targets. We
start by presenting the RBTA [1]. The algorithm was
originally developed for broadband infrared images with
subpixel targets, but we altered it to account for pixel blur
(atmospheric and system effects which would cause the
emitted power of the target to be spread over several pixels)
and multipixel targets in hyperspectral imagery.

To estimate detector performance, Rotman and Bar-Tal
proposed a multistep process that begins with an analysis
of the unmodified reflectance image that is available in the
website without any embedded targets. (We assume that
ideally no targets are present in the datacube being analyzed;
if one were present, it would slightly distort the histogram of
the image. We trust that such a distortion will not disturb
the overall analysis of the image statistics). The algorithm
being tested is evaluated for each pixel, and the results are
summarized in what we call a false-alarm histogram. Next
we embed targets into every pixel and evaluate each of
the algorithms. This is done independently for each pixel
(rather than simultaneously) so that surrounding pixels are
not changed prior to algorithm evaluation. The results are
arranged in a target detection histogram. Each histogram
(false-alarm and target detection) is then normalized; a
variable threshold is set and the area of the false-alarm
and target histograms to the right of the threshold are
measured. For any particular threshold, a pair of Pgs and
Pp (probability of false alarm and probability of detection)
values are generated. The threshold is swept through all
possible detector outputs, generating a set of these pairs.
When graphed, these points produce the ROC (receiver
operating characteristic) curves.

We note that the target implantation mechanism as
given here has ignored several possibly significant effects
which would affect the values found of PD. In particular,
the target spectrum is a nearly noiseless lab spectrum that
does not have the same artifacts, noise, and degradation
as the real imagery. Additionally, this approach assumes
the data has been perfectly atmospherically compensated
by RIT’s algorithm, which is not necessarily true. In our
opinion, this seems to limit the use of our method rather
than to invalidate it. Since the atmospheric conditions at
the time of the measurement were not known, we cannot
implant atmospherically corrected signatures or validate
the reflectance dataset that is available in RIT website.
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Instead, we are testing the response of the algorithms to
an implanted nonatmospherically corrected target which
has been substituted in the reflectance dataset as described
above; in each examined pixel, the fraction of the laboratory
signature replaced the fraction of the background signal.
While inaccurate atmospheric correction may result in an
unknown decrease in the target detection, we note that the
final comparisons are for variations in algorithm selection
for a given target signature. The method should not be used
to calculate absolute values for the probability of detection
of a particular target which indeed has been altered by
atmospheric and other effects. Rather, we are attempting to
determine which algorithms will have a superior probability
of detecting a target of this type in the scenario. Future
work should include a quantitative determination to what
degree atmospheric effects change the ranking of different
algorithms.

This methodology can be used for the following reasons:
as a rule, the ROC curve, which are generated tend to have
probabilities of detection which range from 0 to 1; the
value of probabilities of false alarm, on the other hand, vary
from 0 to some chosen threshold Ppa.max. This threshold
is normally set quote low; a standard value would be
0.01. This is appropriate since the acceptable use of most
detection algorithms could only be in the range where a small
percentage of the pixels in the image would be false alarms.

Now, the exact distribution of the background pixels is
crucial for the analysis of our detection algorithms; it will
indeed be the exceptional pixels in the tail of the distribution
which will determine the ROC curve. However, since the
probability of detection is being determined by the entire Pp
scale from 0 to 1, all pixels contribute. In other words, the
target detection scheme in this paper is extremely sensitive to
a few false alarms; it is much less sensitive to a few pixels with
missed “synthetic” target signatures. As such, subtle effects
affecting the exact form of the target signature in situ are not
being measured; rather the average response of the algorithm
to the target signatures placement in all the pixels is the key
factor. For our above goal, that is, the comparison of different
target algorithms, we believe our method to be reliable.

To summarize, ROC curve evaluation entails the follow-
ing steps as demonstrated in Figure 1.

3. Subpixel Target Detection: Global Methods

3.1. CEM. In many cases, it is convenient to scale the
matched filter such that it has a value of 1 when the target
signature fills the pixel being examined. This scaling can be
achieved by normalizing the matched filter to its value when
operating on the designated target spectrum:

_T=_l__

T m
'R 3

where s is the reference signature of the target, R is the
background correlation matrix, that is, an [L x L] matrix,
L is the number of bands, and x is the observed pixel.
Geometrically speaking, the CEM algorithm measures the
projection of x onto s normalized by the length of s in the

CEM(X) =
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FiGgure 1: RBTA flow chart.

whitened space and thus leads to planar decision surfaces
in that space. An important characteristic of the CEM
algorithm is that its output is correlated to the target’s
fractional abundance in signature x, assuming the target
signature is well isolated from the other endmembers, mixing
is linear, and the relative abundances of the endmembers
folow a Dirichlet distribution [9].

3.2. GLRT and ACE. Manolakis and his group [10-14] have
described a number of stochastic target detection algorithms,
including that attributed to Kelly [15] for solving to the
Neyman-Pearson decision/detection theory for maximizing
the probability of detection of a target with a fixed probability
of false alarms. The solution uses a GLRT expressed as

GLRT(%) =( [ (s-m5) =1 - ] 2)
A([6-m)'C" () @

[+ - (z-m5) T (7-7m) ),

where s and x are the same as for (1), mg is the global mean,
G is the background covariance matrix, and M is the total
number of samples.

The ACE algorithm, a variation of the GLRT algorithm,
is expressed as

T
/(| (6-m) T (s-m) | 3)
) e ()] ).

with a maximum value of 1 for the case of x = s and a
minimum value of 0 when x = mj.

In the context of target detection, the sign of (s —
mg)TG™!(x — myg) is important, as only positive abundances
are of interest. (In contrast, this would not be the case for
thermal gas detection, for example, where the target could be
either absorptive or emissive in nature). Thus, in practice, a
signed version of the GLRT algorithm is used as follows:

I=1

GLRTign(%) = sign[(s -mg) G (%- Wg)] - GLRT().

(4)

The corresponding ACE algorithm for target detection,
also a variation of the GLRT algorithm, is expressed as

=-1

ACE;ign (%) = sign[(E - ‘nTg‘) G (f = m_g)] . ACE(Z).

(5)

Because real data does not necessarily match the assumptions
from which the above algorithms are derived, that is, a
background probability distribution function assumed to be
multivariate Gaussian with zero mean bias and an additive
target model, we generally cannot expect that any of the
algorithms will be optimal or even that one will consistently
outperform another [8]. Nevertheless, it was shown by
Manolakis [13] that for a limited dataset, although each of
the algorithms exhibited some degree of success in target
detection, the ACE algorithm performed best on the limited
dataset tested.

In Figure 1, step 1, note that the target is not in all
the positions simultaneously; rather, the result is obtained
sequentially. Steps 4 and 8 are generated by one minus the
cumulative histogram using the results from step 3 and 7,
respectively, (these are the probability of detection-PD). In
Step 9, we plot PD values (step 4) versus the PFA (step 8).



4, Subpixel Target Detection Using Local
Spatial Information

Improving target detection involved replacing the global
mean with the local mean. Using the local mean is definitely
double edged: on one hand, we would expect that the
closer the points used to evaluate the background are to the
suspected target, the more likely it is that the estimate will
be accurate. On the other hand, the noise in the estimate
will decrease given more points entering into the estimation,
assuming that the background is stationary and the noise is
linearly added to the background and independent thereof.
Our empirical experience confirmed by several studies (4)
and (5) is that the closer we choose the pixels the better, with
the condition that we do not have target contamination of
the background pixels. It is this proviso that we wish to test
here.

We note that we are not dealing here with a “local”
covariance matrix which would change when evaluating each
pixel in the image. Rather, we use the same covariance
matrix throughout the image; it will simply be based on the
difference of the sample pixels and their “local” background.

Since we are dealing with a subpixel target, which in the
physical domain can affect only pixels in a limited spatial
area surrounding the center of the target, we used the eight
nearest neighbors approach to estimate the value of the test
pixels. The CEM algorithm does not use the mean and will
therefore be unaffected by the above changes. The GLRT can
be improved as follows:

-[1 +(1/M) - (E—%)Tﬁ_l(f—%)]),
(6)

and for target detection

GLRTjign-local (%) = sign I:(g = m_S)TE_l (x - hTB)]
(7)
» GLRT}ocal (%),

with mg, the mean of the eight nearest neighbors, replacing
the global mean mg. For the ACE detector, the same
procedure (replacing m, by mg) may be followed.
Segmentation [16—18] or even more local covariance
matrices [2, 4, 6, 19] can be used to improve the covariance
matrix. Common to all these methods is an increased
need for high performance computational resources, while
the corresponding influence each method has on detection
ability is uncertain and highly dependent on the pictures
being analyzed. Used in parallel, the algorithms create new
difficulties through the combination of results from different
segments. We used a global covariance matrix, but adapted
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it to local variations by using the local rather than the global
mean, that is,

auni|

Eglobal =
e (8)
_Eloca] = [X - MS]M[X - Ms] >

where X is a two-dimensional matrix (M X L), in which M
is the number of pixels and L is the number of bands, m,
[1 x L] is the mean vector of X, and M, is my replicate M
times. When we use My for the covariance matrix, we do not
need to replicate the mean, because Mj is also of size [M x L],
and this is the appropriate covariance matrix for whitening
X — Mg.

5. Data

We tested our algorithms on the online reflectance data
sets and the hyperspectral data collected over Cooke City.
The Cooke City imagery was acquired on 4 July 2006 using
the HyMap VNIR/SWIR sensor with 126 spectral bands.
Two hyperspectral scenes are provided with the dataset, one
intended to be used for development and testing (the “Self
Test” scene, where the positions of some targets are known)
and the other intended to be used for detection performance
evaluation (the “Blind Test” scene, where the position of
targets is unknown). The data was corrected for atmospheric
effects and available in the website but the exact atmospheric
condition and the atmospheric correction algorithm are not
available in the website and we assume that the reflectance
dataset is good but not perfect. In Figure 2, we present the
image in false color.

The target signatures, used both in the algorithm for
detection and in the implantation of the synthetic targets
in the RBTA method were laboratory measured and in
reflectance units. The GSD is approximately 3 m. In Figure 3,
we present the spectral signature of the targets in the blind
test image.

The list of all targets is presented in Table 1 below.

6. Spatial Effect

6.1. Analytical and Simulated Performances of GLRT and ACE

6.1.1. Simple Case. The general form for local target detec-
tion as described in Section 3 is

N— 2
Diocal (%) = ([(? — )G @~ Ws)] )

/([(s—m—g)'rﬁ_'(s—ms)] (9)

w4 G-m)'S G -mw),
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TasLE 1: Targets description.

Target ID Target description size (m?*) No. 1 size (m?) No. 2  Self test ground truth  Blind test ground truth
F1 Red cotton fabric panel 3x3 N/A Yes No

F2 Yellow nylon fabric panel 3x3 N/A Yes No

F3 Blue cotton fabric panel 2x2 1x1 Yes No

F4 Red nylon fabric panel 2x2 1x1 Yes No

F5 Maroon nylon fabric panel 2x2 1x1 No Web score
F6 Gray nylon fabric panel 2x2 1x1 No Web score
F7 Green cotton fabric panel 2x2 1x1 No Web score
V1 Chevy Blazer, green 4x2 N/A Yes Web score
V2 Toyota T100, white with black plastic liner 3x 1.7 N/A Yes Web score
V3 Subaru GL Wagon, Red 45x 1.6 N/A Yes Web score

False-color RGB image

100 200 300 400 500 600 700 800

FiGURE 2: False-color RGB of the Cooke City imagery.

with mg as the mean of eight neighbors. G, the global-local
covariance matrix, is computed as

() (R

(10)

Gglobal_local =

where we can get GLRT and ACE as functions of ¥ + ¥:

GLRTZ"I"] =M, “I”g_ = 1,

(11)
ACEZ\P]=0, \P2=1.

For the case in which the PUT (pixel under testing) x is
exactly s, we obtain the following results:

Diocal(X) = ([(3 _ Tﬂ_s)TE—l(g - %)]2>
(o-mree-n]

-[(‘P. +9,) . G-7g) G G- rn'g)]).
(12)

Let us define the scalar C as—

C=G-7) G (G- (13)

08 : e . . . , - g

450 600 800 1000 1200 1400 1600 1800 2000 2250 2500

— F5 V1
— F6 == N2
F7 V3

FiGURE 3: Spectral signatures of the targets that are present in the
Blind test image x-axis is the wavelength [nm] and y-axis is the
reflectance unit less.

Therefore, when ¥ is exactly 5, GLRT and ACE can be
written as

— C — l
GLRT®) = 31 a1 = e 1 (14)
ACE(s) = 1.

Assuming that the data is normally distributed, C is chi-
square distributed with E(C) = L, where L is the number of
bands. For the case in which M > E(C) = L, we can assume
that

GLRT(s) = £

i (15)

7. Pixel Phasing Case

When imaging, the target can often fall across several pixels
even if its total size is only a single pixel; we will call this
effect pixel phasing even though it is a natural consequence
of imaging system quantization. The pixel phasing effect can
be demonstrated by a target one pixel in size, the imaging
of which leads to pixel phasing registration defined by p,
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THgld. Mold. Migld. Mold.. MgldL THgld
8 8 8 8 8 8
Mgld. Mgld_ gld_ Mgid.
8 8 8 8
Mald_ Mold_ Myld. Mold Meld. Mold.
8 8 8 8 8 8

(a) Simple case

(b) Pixel phasing case

FiGURE 4: Pixel phasing schema.

such that 0 < p < 1 (0 corresponds to perfect sampling, with
the target completely replacing the background) (Figure 4).
From the point of view of the central pixel, it is not important
the spatial location of the fraction within the pixel nor the
location of the remainder of the target signature. Assuming
uniform backgrounds of mgq.g for both center pixels, they
can now be given as in Figure 4.
We obtain the following:

xNew=P'§+(l—P)'mold_8y (16)
where Xy is the new PUT for the pixel phasing case and

7+p 1 -
Mpew 8 = T * Mold_g +

P g3, (17)

where #pew_g is the new mean for the background.
We now evaluate the terms (5 — #ineys) and (X — Finews)
as follows:

7 1-
(53— mNewS) =5- [% * Mold_8 +'Tp *?]
. (18)
+
- % « (5 — ol 8)s

(X*New — TNews) = (P *5+ (1 - P) i mold_B)

7+p l—-p  _
= (T * Mold_g + 3 * S) (19)

9.p—-1

- (5§ = Molds)-
The GLRT result now becomes
Droca(®) = ([((9- p = 1)/8) - (((7+ p)/8) - C)T?)

A[(9-p=1)/8) - ((9- p—1)/8) - C]

(¥ + W2 ((7 + p)/8) - ((7+p)/8) - C])s
(20)

where Diocl(X) is the general local detector for the pixel
phasing case.
For the case in which N > C, we calculate that
_(p*+14p+49) C

GLRTmiss_sampling(-’_c) = T ’ M

24 14p +49
= (—P_%—) : GLRTIocaI’

where GLRT igs_sampling(¥) is the expected GLRT value for the
pixel phasing case and M > L. The GLRT expected value
degrades as a function of p. But for ACE (¥, = 0, ¥, = 1)
we still get expected values of 1:

ACEmiss-sa\mpling(x) = 1 = ACEjpcal (%). (22)

In this model, the complete lack of ACE degradation as
a function of pixel phasing may explain why ACE is a more
robust detector than GLRT in many test cases, as noted in the
literature [8, 20].

(21)

8. Ranking the Algorithms by RBTA

The difficult task of synthesizing a synthetic image to
help predict which algorithm to select is simplified and
detector selection is facilitated if we synthesize only the target
signature of our real image. Suppose we want to determine
the proper detector for a specific target. We have already
selected our method (e.g., CEM, GLRT, or ACE), and now we
want to select the size of the local window. One approach is
to assume that the best size for the local window is that under
which the PUT value can be predicted with minimum error
vis-a-vis the real PUT (in which we normalize each band by
the mean values of the pixels in that band).

The approach outlined above depends only on the
background image, not on the target signature, and it
entails two assumptions: first, estimating signature values
will improve our detector results independent of the different
target signatures and second, the target has no effect on
its neighbors. Address these assumptions in the following
sections.
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FIGURE 5: RBTA results for different size of local windows.
9. How to Use RBTA For the values found experimentally for p, the target

The implementation of RBTA, which depends on our ability
to implant realistic signals into backgrounds and measure
detector response, should be done carefully. We cannot
expect the real signature to be identical to a library signature,
but we can hope for a high level of similarity. The low
percentage of the target signature that actually enters any
particular pixel is demonstrated in Figure 6; the response
of the CEM filter, which responds proportionally to the
percentage of the target fill in the tested filter, was maximum
at 0.06.

As a rule, to test and challenge our algorithms by exam-
ining the area under the ROC curve, we need to test targets
which neither “saturate” the ROC curve (with a probability
of detection close to one with no false alarms detected) nor
result in a “diagonal” ROC curve (in which the probability
of detection equals the probability of false alarms. As the
allowable false alarm rate decreases, the strength of our
synthetic implanted target would need to increase; if we
know what the acceptable false alarm rate is, we can select
the target percent that will demonstrate the dynamic range
around this rate and get results for our detectors (Figure 5).

was easily detectable and saturated our ROC curve. Thus,
we only embedded 0.0075 of the target signature in the
background pixels to generate the target detection histogram.
In our results, we found that for GLRT and ACE, the best
local window size is 3 x 3 pixels (CEM has no local form).
We also see that using bigger windows to estimate the pixel
signature value gets us closer to the performance of global
detectors that use a global mean. In this case, it is clea that
local detectors are superior to global detectors.

In terms of real data, we must expect each target to affect
more than one pixel even if its total physical size is at the sub-
pixel level. A discussion of this point follows below and leads
to improvement of the RBT algorithm.

10. Improvements to RBTA

10.1. Target Size. As will be discussed in Sections 11-12 the
apparent target size in the final digital image is related both
to its physical size and to various atmospheric and sensor
effects, for example, its point spread function (PSF), Gibbs
effect, crosstalk between pixels, spatial sampling, band-to-
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Figure 6: CEM results (2D and 3D) for target with pixel size.

band misregistration [5], and motion compensation. Thus,
a target of a single pixel could actually occupy several pixels.
In the RIT blind test, there are two 3x3-m targets, that is,
exactly the size of the ground sample resolution (GSD) for
the self and blind test images. Figure 6 shows a sample target
of this size.

11. Spatial Sampling Effect

If we take into account only the spatial sampling effect, we
can estimate the percent of pixel area partially occupied by
the target. Notice that even targets of subpixel size often
spread over neighboring pixels (Figure 7).

Put formally, the percent of pixel area covered as a
function of target size, target location, and target orientation
is

05 4 . .
Starget in_pixel = H — + (a- B) - UnitBox[x, ¥] - dxdy,
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X=[a-[(x-Ax) cos(8) — (y — Ay) - sin(6)]],

¥ =[B- [(x—Ax)-sin(8) + (y — Ay) - cos(8)]],
(23)

where 0 represents the clockwise rotation of the target
relative to the pixel grid, and , 8 represent the proportions of
target length and width, respectively, relative to pixel physical
dimension, Ax, Ay are the transition of the target origin
relative to the pixel origin, as demonstrated in Figure 8

1 -1 L snd -2 1
UnitBox[x, y] = g SES MG =SSR o
0 else.
(24)
The expected value E[Sa, ] is
E[S“ﬁ] = JJIDStarget-in.pixel dAx - dAy - de,
0<Ax <05 (25)
D=70=<Ay=<05¢
0<fO=<nm

If we set 0 to a constant value of zero and the target length
and width are half the size of a pixel, we can simulate all the
locations of the target where it’s covering the same percent of
pixel area (Figure 9).

Calculating (25) for a different size target using a
numerical example produced the results shown in Figure 10.

In the graphs depicting pixel coverage as a function of
physical target size, the x-axis is the ratio either between the
target area and the pixel area (Figure 10(a)) or between the
target length and the pixel length (Figure 10(b)). The blue
line in both figures represents the percent of target within the
pixel, while the green line is the percent of the pixel expected
to be covered. It is intuitive that a very small target will be
located in only one pixel, covering a small percent of that
pixel. It is less intuitive, however, that the expected pixel to
be covered will be entirely covered only by a target with an
area four times that of the pixel.

12. Point Spread Function Effect

The PSF effect, present in any optical system, is not always
known. Let us assume that the PSF is a typical, rotationally
symmetric Gaussian filter of size 3 x 3 with standard
deviation sigma 1/2.

Figure 11 demonstrates the synthetic spread effect that
emerges from the convolution of the optical PSF (Fig-
ure 11(a)), and the physical pixels phasing due to target size
(Figure 11(b)). For the spatial sampling we took the mean
case representing the average pixel phasing that we could
expect. Figure 11(c) represents the total effect, for example,
convolution between (a) and (b). We devised an improved
RBTA (IRBTA) and embedded the pixel signature and its
neighbors with ratios as shown in Figure 11(c).

A comparison of Figures 5 and 12 shows that global
detector and local detectors that both use only 7 x 7 frames



