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Preface

The device scaling concept, which can lead to increase in both switching speed and integrated
density of MOSFETSs with reasonable power consumption, has been the main guiding principle
of the integrated device engineering over the past 40 years. It has been recognized, however,
that conventional device scaling has confronted difficulties below the sub-100nm regime,
owing to several physical and essential limitations directly related to device miniaturization.
As a consequence, new device technologies to overcome these difficulties are highly required.
A group of these new device technologies, called technology boosters, include high-k gate stack
technologies, high carrier mobility channels, ultrathin-body structures, multigate structures,
metal source/drain, and novel operating principles. The basic purpose of these technologies are
to boost or improve specific device parameters, such as carrier velocity, gate leakage current,
short-channel effects, subthreshold slope, and so on.

Given the large number of technology options mentioned above, physically based device
simulations will play an important role in developing the most promising strategies for forth-
coming nanometer era. In particular, most of the device architecture and material options are
expected to affect the performance of MOSFETS through the band structure, the electrostatics
and the scattering rates of carriers in the channel region. Therefore. microscopic or atomistic
modeling is necessary to obtain a physical insight and to develop a quantitative description of
the carrier transport in ultrascaled MOSFETSs. In this context, this book aims to offer a
thorough explanation of carrier transport modeling of nanoscale MOSFETS, covering topics
from the atomistic band structure calculation to the most recent challenges targeting beyond
the end of the International Technology Roadmap for Semiconductors (ITRS). We also focus
on the roles of phonon transport in ultrascaled MOSFETSs, which are getting a lot more
attention lately as major thermal management challenges on the LSI chip.

As for the modeling methodology, we have highlighted the multi-subband Monte Carlo
method because of some distinct advantages compared to other methods. Specifically, it
provides us with the ability to explore all transport regimes, including diffusive, quasi-ballistic
and even quantum transport (by applying a Wigner Monte Carlo technique) regimes, and also
introduces new scattering mechanisms without increasing its computational resources.
The physical interpretation of calculated results is intuitively comprehensible, owing to its
particle description of the carrier transport. The dynamical equation of the Wigner function
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(i.e. the Wigner transport equation) is very similar to the Boltzmann transport equation, except
in the influence of the potential whose rapid space variations generate quantum mechanical
effects. Furthermore, it coincides with the non-equilibrium Green’s function formalism under
a ballistic transport. We have illustrated the details of the Wigner Monte Carlo technique and
its application to the quantum transport analysis of I1I-V MOSFETS in this book.

To go beyond the end of the ITRS roadmap, several alternative or innovative devices
are being investigated, such as nanowires, carbon nanotubes, graphenes and tunnel-FETs.
We have dealt with nanowires and some atomic layer 2-D materials related to graphene, and
have discussed their performance potentials by comparisons with those of competitive
MOSFETSs composed of Si and III-V compound semiconductors.

This book was written for graduate students, engineers and scientists who are engaged in
work on nanoscale electronic devices, and was designed to provide a deeper understanding of
physical aspects of carrier transport in real electronic devices. Familiarity with quantum
mechanics, basic semiconductor physics and electronics is assumed. After working through
this book, students should be prepared to follow current device research, and to actively
participate in developing future devices.

Hideaki Tsuchiya
Yoshinari Kamakura
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1

Emerging Technologies

1.1 Moore’s Law and the Power Crisis

Figure 1.1 shows the famous Moore’s law for a metal-oxide-semiconductor field-effect tran-
sistor (MOSFET) integrated in an electronic logic circuit, which illustrates the annual varia-
tions in the number of transistors and in transistor size in a simple way. Since large-scale
integrated (LSI) circuit technology was invented in the 1960s, the progress of miniaturization
techniques based on scaling law has achieved significant advancement in the electronics
industry, up to the present date. However, from the year around 2005, the increase in power
consumption of LSI circuits has become a major problem. To succeed in the scaling law, not
only the geometrical dimensions of MOSFET, a basic building block of LSI circuit, but also
their power supply voltage, are required to be scaled down simultaneously. However, the
power supply voltage has ceased to fall, at around 1V after 2005. There are various reasons
for this — for example: to suppress characteristic variability among hundreds of millions of
integrated MOSFETS; to cut wasteful power consumption in the off-state; to maintain high-
speed performance, and so on. Consequently, LSI consumption power or, in terms of global
influence, the total electrical power consumed by IT devices and systems all over the world,
increases rapidly year by year.
The power consumption of a MOSFET is expressed by:

P=fCy vd:l +1; Vi (1.1)
where f, C, . V,, and I  represent the operating frequency, the load capacitance, the power-
supply voltage, and the off-current, respectively. The first term on the right-hand side of
Equation (1.1) corresponds to the power required to charge and discharge a MOS capacitor,
(i.e., a consumed power at on-state), and the second term, consumed power at off-state. The
ceasing to fall of V, , as mentioned above, has mainly induced the increase in consumed power
at on-state. On the other hand, owing to the drain-induced barrier lowering (DIBL)

Carrier Transport in Nanoscale MOS Transistors, First Edition. Hideaki Tsuchiya and Yoshinari Kamakura.
© 2016 John Wiley & Sons Singapore Pte. Ltd. Published 2016 by John Wiley & Sons Singapore Pte. Ltd.
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Figure 1.2 Influences of DIBL on I — V. characteristics. DIBL degrades the subthreshold slope (SS)
and then causes an exponential /  increase.

phenomenon, which is caused by reduction of the gate electrostatic control over the channel
with decreasing the channel length, [ is beginning to increase exponentially, as shown in
Figure 1.2. This leads to a drastic increase in consumed power at off-state — which, for in-
stance, decreases the battery life of mobile devices such as smartphones and wearable
appliances.

1.2 Novel Device Architectures

To reduce the off-state power consumption, novel structure MOSFETS that possess better gate
electrostatic control to suppress DIBL have received a lot of attention [1.1]. The representative
new device structures are shown in Figure 1.3. In 2012, the Intel Corporation released an
announcement stating that they were starting to manufacture central processing units (CPUs)
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Si (Channel)

Si0,(BOX)

Si (Substrate)

Figure 1.3 Representative new device structures. (a) ultrathin-body (UTB) silicon-on-insulator (SOI)
structure; (b) double-gate (DG) structure; (c) Fin or trigate structure; and (d) gate-all-around (GAA)
nanowire structure.

constructed from FinFETs [1.2]. This was a landmark in the electronic industry, because a
three-dimensional transistor has been commercialized for the first time since the planar type
MOS transistor was invented in 1960. A GAA nanowire MOSFET, shown in Figure 1.3(d), is
considered one of the ultimate structures of FinFETs and, therefore, globally active and
competitive research has been promoted.

As seen in Figure 1.3, these new structure MOSFETSs have an ultrathin Si channel sand-
wiched in between gate oxides or insulators of substrate. In particular, Si channels in FinFET
and GAA nanowire MOSFET are completely surrounded by oxides. As a result, the Si channel
thickness T, fluctuates along a transport direction in atomic scale, as shown in Figure 1.4,

When T is thinner than a spatial extent of carrier’s wave function, the T fluctuation
produces spdtml fluctuation of quantized sub-band along the transport dnrectmn and thus
leads to an additional scattering source for carriers. Consequently, the carrier mobility
may seriously decrease in nanometer-scaled new structure MOSFETSs. The influence of
the T, fluctuation was first investigated by H. Sakaki et al. experimentally and theoreti-
cally for GaAs/AlAs quantum well structures [1.3]. They found that the electron mobility
reduces in proportion to the sixth power of quantum well thickness, which shows that the
interface fluctuation scattering is the dominant scattering mechanism in thin quantum
well structures.

For SOI-MOSFETsS, K. Uchida er al. experimentally demonstrated that the same channel
thickness dependence as for Sakaki’s result is obtained for T_s less than 3nm, as shown in
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Figure 1.4 Spatial fluctuation of Si channel thickness along transport direction, which emerges in
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Figure 1.5 T dependence of electron mobility at 25K [1.4]. 7.° dependence is clearly observed for
Tgs less than 3 nm.

Figure 1.5 [1.4]. Therefore, there are growing concerns about the degradation of the on-state
device performance in new structure MOSFETs with a nanometer channel thickness.
However, the role of the T, fluctuation under a quasi-ballistic transport, where scattering
events inside the channel decrease to several times, has not yet been fully understood.
To deeply understand it, we need to develop a device simulation technique considering
quantum confinement and scattering effects at the atomic level. We will describe such a
challenge in Chapter 3.

In addition to the scattering by the T, fluctuation mentioned above, phonon scattering and
impurity scattering also play an important role. In particular, intrinsic channels are likely
adopted in novel structure MOSFETs and, thus, deep understanding of phonon scattering
processes in ultrashort channel MOSFETSs should be important. Carrier transport in this
regime has been actively discussed in terms of the quasi-ballistic transport since K. Natori
proposed the concept of ballistic MOSFET [1.5].

As for phonon scattering processes, interestingly, inelastic phonon emission processes can
suppress carriers backscattering to the source and then promote ballistic transport, contrary to
common sense, in the case of ultrashort-channel MOSFETSs [ 1.6, 1.7]. This is considered to be
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due to the fact that once a carrier has lost its kinetic energy by a few multiples of k7" (about
60 meV for silicon) via inelastic phonon emission processes, the carrier has little chance of
returning to the source, due to the potential bottleneck barrier, and is eventually absorbed into
the drain; thus, the ballisticity improves. We will discuss this subject in detail in the first half
of Chapter 3.

The continued scaling of transistor dimensions and integrated density is causing major
thermal management challenges on the LSI chip [1.8]. In particular, the novel structure
MOSFETs have Si channels surrounded by the gate oxides and insulators, which have a lower
thermal conductivity than Si [1.9]. Therefore, thermal energies generated in a device via
optical phonon emission are readily accumulated inside the device, which might lead to deg-
radation of the device performance. In Chapter 4, we will discuss phonon transport in Si
nanostructures, to examine such a heat generation problem qualitatively.

1.3 High Mobility Channel Materials

The reduction of V is essential to decrease on-state power consumption. Higher mobility
channel materials can increase the on-current because the carrier’s velocity becomes higher at
the same V , and thus they are expected to achieve equal or superior performance to
Si MOSFETS under a lower V operation [1.10], as shown in Figure 1.6.

The effective masses and mobilities of representative semiconductors are summarized in
Table 1.1. Compared to Si. Ge has both a higher electron mobility and a higher hole mobility,
while III-V compound semiconductors, that is, InP and In  Ga  As, have a significantly
higher electron mobility. One of the important reminders is that the solid solubility of donors
in II-V semiconductors is limited to less than, or comparable to, 2x10"cm™ [1.11].
Consequently, III-V MOSFETSs generally exhibit a higher parasitic resistance in source and
drain electrodes than Si MOSFETs do [1.12—1.15]. This also may lead to “source starvation™
[1.12, 1.13], which cannot maintain a large flow of ballistic carriers heading in the channel,
owing to the insufficient impurity scattering in the lightly doped source. We will discuss this
subject in the first half of Chapter 5.

The higher mobilities of I1I-V semiconductors are mainly due to their lighter effective
masses. But then, a lighter effective mass carrier has a larger tunneling probability through a

lon increase
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Figure 1.6  On-current increase due to high-mobility channel MOSFETs. They are expected to achieve
a lower V, operation than conventional Si MOSFETS.
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Table 1.1 Effective masses and mobilities of representative semiconductors.

Material Si Ge InP In . Ga, As
electron  mass m, (m;) 0.19/0.98 (m/m)  0.082/1.59 (m/m)  0.082 0.046
mobility (¢cm*V-s) 1600 3900 5400 25 000
hole mass m, /m, (m ) 0.49/0.16 0.28/0.044 0.45/0.12  0.51/0.22
mobility (cm*V-s) 430 1900 200 450
(a)
) ) 100 —
Potential barrier Si
L|— Si
2 o InGaAs
g 107 L ;
0.5eV o
=%
g 5 Tunneling
—l] | v 2 1072 : E
“«—> S |
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6nm i
m*=0.190 my for Si 1[0l S T ——
X 0 0.5 1.0
m*=0.046 m, for InGaAs Energy (eV)
(b)
¥t P Source-drain direct
_—/ tunneling (SDT)

Source

Figure 1.7 (a) Tunneling probabilities calculated for Si and In,_,Ga, As through a single potential

barrier and (b) schematic of source-drain direct tunneling (SDT) at off-state.

finite potential barrier. Figure 1.7(a) shows the tunneling probabilities calculated for Si and
In,.,Ga, . As through the potential barrier with 0.5eV height and 6 nm width, which supposes

0.53 0.47
an off-state of a sub-10nm MOSFET. The effective masses were given as m*=0.19m_ for Si

and 0.046 m, forIn, _.Ga_  _ As.

.53 7
It is found that I(;lnﬂG(:; ,,As exhibits several orders of magnitude larger tunneling proba-
bility than Si. This phenomenon leads to a tunneling leakage current between source and drain
electrodes at off-state, as shown in Figure 1.7(b). Therefore, this is called “source-drain direct
tunneling (SDT).” SDT might be a major obstacle in downscaling I1I-V MOSFETS into the
deca-nanometer or nanometer scale [1.16, 1.17]. We will discuss this subject in the second

half of Chapter 5.



