Optimized

C++E LT (enkR)

¥ &K' Rt Kurt Guntheroth Z&

C++EREM L FM 2o

Optimized C++

Kurt Guntheroth &

* ®
Beijing « Boston « Farnham - Sebastopol « Tokyo O'REILLY

O'Reilly Media, Inc. $AR R B A %t iR 4Lt AR

MR REAFHARA

EHEM 4 B (CIP) ##E

CH+ M REL AL F M T 0/ ()R- RBEF B
(Kurt Guntheroth)Z . — R EIAS. —F§ 51 : R md K5 i
#,2017.2 (2017.10EEf)

4 44 JF. 3 : Optimized C++

ISBN 978 — 7 - 5641 — 6999 — 2

[.0C 1.0« Il.0OCHES-BFRit-
FM—3 V. OTP312.8-62

b A B e CIP 088 % - (2017 5 008142 5
B 10 - 2015 - 256 5

© 2016 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2017. Authorized reprint of the original English edition, 2015 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
3 Bl O'Reilly Media, Inc. # 8 2016,

AL B MY A AR F AR 2017, S H PP ARG tH R Ao 4E B 1T 5] R AR Ao 4l B AR BT A &
—— O'Reilly Media, Inc.# % 7T .

BAFFH AFBEBHFT, A BAEMIF Yoo RFUEMTHXEH.

C++ P BB AL T At CRE BN RO

HRRURAT . 2R K4 A

M kb BN 2S HB4 210096
R A e

™ ht: http//www.seupress.com

e FHB{4: . press@ seupress.com

s VLI RUBES EN 55 FR/A A

s 787 Z K X 980 B oK 16 FF 4
: 24.25

s 475 TFF

: 2017 4E 2 HEB 1R

: 2017 4F 10 H &5 3 R EIRY

: ISBN 978 — 7 - 5641 — 6999 — 2
: 89.00 JC

MEDEH DD
S dn SR E

AR A AR O EE S EREER. RIS E) . 025- 83791830

Everyone thanks their spouse for helping make a book possible. It’s trite, I know. My wife
Renee Ostler made this book possible by giving me permission to take months off work,
by giving me time and space to focus on writing, and by staying up late asking me ques-
tions about optimizing C++ code, even though she wasn't particularly engaged by the
topic, just to show her support. She made this project important to her because it was
important to me. No author could ask for more.

Preface

Hi. My name is Kurt, and 'm a code-aholic.

I have been writing software for over 35 years. I've never worked at Microsoft, or
Google, Facebook, Apple, or anywhere else famous. But beyond a few short vacations,
I have written code every day of that time. I have spent the last 20 years almost exclu-
sively writing C++ and talking to other very bright developers about C++. This is my
qualification to write a book about optimizing C++ code. I have also written a lot of
English prose, including specifications, comments, manuals, notes, and blog posts
(http://oldhandsblog.blogspot.com). It has amazed me from time to time that only half
of the bright, competent developers I have worked with can string two grammatical
English sentences together.

One of my favorite quotes comes by way of a letter from Sir Isaac Newton, in which
he writes, “If I have seen farther, it is by standing on the shoulders of giants” I too
have stood on the shoulders of giants, and particularly have read their book: elegant
little books, like Brian Kernighan and Dennis Ritchie’s The C Programming Language;
smart, ahead-of-the-curve books, like Scott Meyers’s Effective C++ series; challenging,
mind-expanding books, like Andrei Alexandrescu’s Modern C++ Design; careful, pre-
cise books, like Bjarne Stroustrup and Margaret Ellis's The Annotated C++ Reference
Manual. For most of my career, it never crossed my mind that I might someday write
a book. Then one day, quite suddenly, I found I needed to write this one.

So why write a book about performance tuning in C++?

At the dawn of the 21* century, C++ was under assault. Fans of C pointed to C++
programs whose performance was inferior to supposedly equivalent code written in
C. Famous corporations with big marketing budgets touted proprietary object-
oriented languages, claiming C++ was too hard to use, and that their tools were the
future. Universities settled on Java for teaching because it came with a free toolchain.
As a result of all this buzz, big companies made big-money bets on coding websites
and operating systems in Java or C# or PHP. C++ seemed to be on the wane. It was an
uncomfortable time for anyone who believed C++ was a powerful, useful tool.

Then a funny thing happened. Processor cores stopped getting faster, but workloads
kept growing. Those same companies began hiring C++ programmers to solve their
scaling issues. The cost of rewriting code from scratch in C++ became less than the
cost of the electricity going into their data centers. All of a sudden, C++ was popular
again.

Uniquely among programming languages in wide use in early 2016, C++ offers devel-
opers a continuum of implementation choices, ranging from hands-off, automated
support to fine manual control. C++ empowers developers to take control of perfor-
mance trade-offs. This control makes optimization possible.

There are not many books on optimization of C++ code. One of the few is Bulka and
Mayhew’s meticulously researched but now somewhat dated Optimizing C++. The
authors appear to have had similar career experiences to mine, and discovered many
of the same principles. For readers who are interested in another take on the issues in
this book, their book is a good place to start. Also, Scott Meyers, among many others,
covers avoiding copy construction extensively and well.

There are enough different things to know about optimization to fill 10 books. I have
tried to pick and choose things that seemed to occur frequently in my own work, or
that offered the biggest performance wins. To the many readers with their own per-
formance tuning war stories who may wonder why I've said nothing about strategies
that worked miracles for them, all I can say is, so little time, so much to tell.

I welcome your errata, comments, and favorite optimization strategies at
antelope_book@guntheroth.com.

I love the craft of software development. I enjoy endlessly practicing the kata of each
new loop or interface. At the corner of Sonnet and Science, writing code is a skill so
esoteric, an art form so internal, that almost nobody but another practitioner can
appreciate it. There is beauty in an elegantly coded function, and wisdom in a power-
ful idiom well used. Sadly, though, for every epic software poem like Stepanov’s Stan-
dard Template Library, there are 10,000 drab tomes of uninspired code.

The root purpose of this book is to give every reader permission to think a little
harder about the beauty of well-tuned software. Take it and run with it. See farther!

Apology for the Code in This Book

Although I have been writing and optimizing C++ code for over 20 years, most of the
code appearing in this book was developed specifically for this book. Like all new
code, it surely contains defects. I offer my apologies.

I have developed for Windows, Linux, and various embedded systems over the years.
The code presented in this book was developed on Windows. The code and the book
no doubt show a Windows bias. The lessons of how to optimize C++ code that are

xvi | Preface

illustrated using Visual Studio on Windows apply equally to Linux, Mac OS X, or any
other C++ environment. However, the precise timings of different optimizations
depend on the compiler and standard library implementation, and the processor on
which the code is tested. Optimization is an experimental science. Taking optimiza-
tion advice on faith is fraught with negative surprises.

I am aware that compatibility with various other compilers, and with other Unix and
embedded systems, can be challenging, and I apologize if the code does not compile
on your favorite system. Since this book is not about cross-system compatibility, I
have erred on the side of presenting simple code.

The curly-brace indentation style shown here is not my favorite:

if (bool_condition) {
controlled_statement();

}

However, because it has the advantage of putting the most lines possible on the
printed page, I have chosen to use it for the examples throughout this book.

Using Code Examples

Supplemental material (code examples, sample solutions, etc.) is available for down-
load at www.guntheroth.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O'Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Optimized C++ by Kurt Guntheroth
(O’Reilly). Copyright 2016 Kurt Guntheroth, 978-1-491-92206-4”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xvii

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Used for menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Control).

Italic
Indicates new terms, URLs, email addresses, pathnames, filenames, and file
extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

xviii | Preface

Table of Contents

PYOIACR . s wie e wn e min s miwwime wn s wix swin b may voum e an e e enrus vamvwsvbean e msawsves XY
1. An Overview of Optimization.vvviveuinneiiieniiiiiirereneniinenenes 1
Optimization Is Part of Software Development 2
Optimization Is Effective 3
It’s OK to Optimize 3

A Nanosecond Here, a Nanosecond There 6
Summary of Strategies for Optimizing C++ Code 6
Use a Better Compiler, Use Your Compiler Better 7

Use Better Algorithms 8

Use Better Libraries 9
Reduce Memory Allocation and Copying 10
Remove Computation 11

Use Better Data Structures 12
Increase Concurrency 12
Optimize Memory Management 12
Summary 12

2. Computer Behavior Affecting Optimization......... 555 NV A 50 aeecel 8 15
Lies C++ Believes About Computers 16
The Truth About Computers 17
Memory Is Slow 17
Memory Is Not Accessed in Bytes 18
Some Memory Accesses Are Slower than Others 19
Memory Words Have a Big End and a Little End 20
Memory Has Finite Capacity 20
Instruction Execution Is Slow 21

Making Decisions Is Hard for Computers 22

There Are Multiple Streams of Program Execution
Calling into the Operating System Is Expensive
C++ Tells Lies Too
All Statements Are Not Equally Expensive
Statements Are Not Executed in Order
Summary

Measure Performance.vvveviiiiiieineenenieanranensenss

The Optimizing Mindset
Performance Must Be Measured
Optimizers Are Big Game Hunters
The 90/10 Rule
Amdahl’s Law
Perform Experiments
Keep a Lab Notebook
Measure Baseline Performance and Set Goals
You Can Improve Only What You Measure
Profile Program Execution
Time Long-Running Code
“A Little Learning” About Measuring Time
Measuring Time with Computers
Overcoming Measurement Obstacles
Create a Stopwatch Class
Time Hot Functions in a Test Harness
Estimate Code Cost to Find Hot Code
Estimate the Cost of Individual C++ Statements
Estimate the Cost of Loops
Other Ways to Find Hot Spots
Summary

Optimize String Use: ACase Study.coovvvvinnniennnnn. .

Why Strings Are a Problem
Strings Are Dynamically Allocated
Strings Are Values
Strings Do a Lot of Copying

First Attempt at Optimizing Strings
Use Mutating String Operations to Eliminate Temporaries
Reduce Reallocation by Reserving Storage
Eliminate Copying of String Arguments
Eliminate Pointer Dereference Using Iterators
Eliminate Copying of Returned String Values
Use Character Arrays Instead of Strings

tre v D R R)

22
24
24
24
25
26

27
28
28
29
29
31
32
34
35
37
37
40
40
46
54
58
62
63
63
64
66
67

69
69
70
70
71
72
74
74
75
76
77
78

vi

| Table of Contents

Summary of First Optimization Attempt 80

Second Attempt at Optimizing Strings 80
Use a Better Algorithm 80
Use a Better Compiler 82
Use a Better String Library 83
Use a Better Allocator 87

Eliminate String Conversion 88
Conversion from C String to std::string 89
Converting Between Character Encodings 89

Summary 90

% Optim e SUOOTERINS: v som s s oo e u 6 1 g Srmnres B s v e mm e v i 7

Time Cost of Algorithms 92
Best-Case, Average, and Worst-Case Time Cost 95
Amortized Time Cost 95
Other Costs 96

Toolkit to Optimize Searching and Sorting 96

Efficient Search Algorithms 96
Time Cost of Searching Algorithms 97
All Searches Are Equal When n Is Small 98

Efficient Sort Algorithms 98
Time Cost of Sorting Algorithms 99
Replace Sorts Having Poor Worst-Case Performance 99
Exploit Known Properties of the Input Data 100

Optimization Patterns 100
Precomputation 101
Lazy Computation 102
Batching 102
Caching 103
Specialization 104
Taking Bigger Bites 104
Hinting 105
Optimizing the Expected Path 105
Hashing 105
Double-Checking 105

Summary 106

6. Optimize Dynamically Allocated Variables.8 008 Nk S0 9 S 0 3 vaviwnse 0L

C++ Variables Refresher 108
Storage Duration of Variables 108
Ownership of Variables 111
Value Objects and Entity Objects 112

Table of Contents | vii

C++ Dynamic Variable API Refresher

Smart Pointers Automate Ownership of Dynamic Variables

Dynamic Variables Have Runtime Cost
Reduce Use of Dynamic Variables
Create Class Instances Statically
Use Static Data Structures
Use std::make_shared Instead of new
Don’t Share Ownership Unnecessarily
Use a “Master Pointer” to Own Dynamic Variables
Reduce Reallocation of Dynamic Variables
Preallocate Dynamic Variables to Prevent Reallocation
Create Dynamic Variables Outside of Loops
Eliminate Unneeded Copying
Disable Unwanted Copying in the Class Definition
Eliminate Copying on Function Call
Eliminate Copying on Function Return
Copy Free Libraries
Implement the “Copy on Write” Idiom
Slice Data Structures
Implement Move Semantics
Nonstandard Copy Semantics: A Painful Hack
std::swap(): The Poor Man’s Move Semantics
Shared Ownership of Entities
The Moving Parts of Move Semantics
Update Code to Use Move Semantics
Subtleties of Move Semantics
Flatten Data Structures
Summary

Optimize Hot Statements: o« vivancvssnivsamsoisosimssnivessionis

Remove Code from Loops
Cache the Loop End Value
Use More Efficient Loop Statements
Count Down Instead of Up
Remove Invariant Code from Loops
Remove Unneeded Function Calls from Loops
Remove Hidden Function Calls from Loops
Remove Expensive, Slow-Changing Calls from Loops

Push Loops Down into Functions to Reduce Call Overhead

Do Some Actions Less Frequently
What About Everything Else?
Remove Code from Functions

113
116
118
119
119
121
124
125
126
127
127
128
129
130
131
132
134
136
137
137
138
138
139
140
141
142
145
146

147
148
149
149
150
151
152
155
156
157
158
160
160

viii

| Table of Contents

Cost of Function Calls 161

Declare Brief Functions Inline 165
Define Functions Before First Use 165
Eliminate Unused Polymorphism 165
Discard Unused Interfaces 166
Select Implementation at Compile Time with Templates 170
Eliminate Uses of the PIMPL Idiom 171
Eliminate Calls into DLLs 173
Use Static Member Functions Instead of Member Functions 173
Move Virtual Destructor to Base Class 174
Optimize Expressions 174
Simplify Expressions 175
Group Constants Together 176
Use Less-Expensive Operators 177
Use Integer Arithmetic Instead of Floating Arithmetic 177
Double May Be Faster than Float 179
Replace Iterative Computations with Closed Forms k 180
Optimize Control Flow Idioms 182
Use switch Instead of if-elseif-else 182
Use Virtual Functions Instead of switch or if 182
Use No-Cost Exception Handling 183
Summary 185
s UseBetterLIDraries, so « n var v s mnoue si e pion wa s wonbm e s mus smens v wmn sl s ooy 187
Optimize Standard Library Use 187
Philosophy of the C++ Standard Library 188
Issues in Use of the C++ Standard Library 188
Optimize Existing Libraries 191
Change as Little as Possible 191
Add Functions Rather than Change Functionality 192
Design Optimized Libraries 192
Code in Haste, Repent at Leisure 193
Parsimony Is a Virtue in Library Design 194
Make Memory Allocation Decisions Outside the Library 194
When in Doubt, Code Libraries for Speed 195
Functions Are Easier to Optimize than Frameworks 195
Flatten Inheritance Hierarchies 196
Flatten Calling Chains 196
Flatten Layered Designs 196
Avoid Dynamic Lookup 198
Beware of ‘God Functions’ 199
Summary 200

Table of Contents | ix

9. Optimize Searchingand Sorting.covvvvnnennns .5 5 R Nl 5.5 3 B S 201

10.

Key/Value Tables Using std::map and std::string
Toolkit to Improve Search Performance

Make a Baseline Measurement

Identify the Activity to Be Optimized

Decompose the Activity to Be Optimized

Change or Replace Algorithms and Data Structures

Using the Optimization Process on Custom Abstractions

Optimize Search Using std::map
Use Fixed-Size Character Array Keys with std::map
Use C-Style String Keys with std::map

Using Map’s Cousin std::set When the Key Is in the Value

Optimize Search Using the <algorithm> Header
Key/Value Table for Search in Sequence Containers
std::find(): Obvious Name, O(n) Time Cost
std::binary_search(): Does Not Return Values
Binary Search Using std::equal_range()

Binary Search Using std::lower_bound()
Handcoded Binary Search
Handcoded Binary Search using strcmp()

Optimize Search in Hashed Key/Value Tables
Hashing with a std::unordered_map
Hashing with Fixed Character Array Keys
Hashing with Null-Terminated String Keys
Hashing with a Custom Hash Table

Stepanov’s Abstraction Penalty

Optimize Sorting with the C++ Standard Library

Summary

Optimize Data Structures....... oEAIN 8 W1be e 8 s $ie5s w16 w05 & R

Get to Know the Standard Library Containers
Sequence Containers
Associative Containers
Experimenting with the Standard Library Containers
std::vector and std::string
Performance Consequences of Reallocation
Inserting and Deleting in std::vector
Iterating in std::vector
Sorting std::vector
Lookup with std::vector
std::deque
Inserting and Deleting in std::deque

202
203
204
204
205
206
208
208
208
210
212
213
214
215
216
216
217
218
219
220
221
221
222
224
225
226
228

. 229

229
230
230
231
236
237
238
240
241
241
242
243

X

Table of Contents

Iterating in std::deque 245

Sorting std::deque 245
Lookup with std::deque 245
std::list 245
Inserting and Deleting in std::list 247
Iterating in std::list 248
Sorting std::list 248
Lookup with std::list 249
std::forward_list 249
Inserting and Deleting in std::forward_list 250
Iterating in std::forward_list 251
Sorting std::forward_list 251
Lookup in std::forward_list 251
std::map and std::multimap 251
Inserting and Deleting in std::map 252
Iterating in std::map 255
Sorting std::map 255
Lookup with std::map 255
std::set and std:multiset 255
std::unordered_map and std::unordered_multimap 256
Inserting and Deleting in std::unordered_map 260
Iterating in std::unordered_map 260
Lookup with std::unordered_map 261
Other Data Structures 261
Summary 263
. OPUMBZON/OL i v cvianiviimasmenmanainssgsnssuess s s s ois o s awsms o s an s otk o 265
A Recipe for Reading Files 265
Create a Parsimonious Function Signature 267
Shorten Calling Chains 269
Reduce Reallocation 269
Take Bigger Bites—Use a Bigger Input Buffer 272
Take Bigger Bites—Read a Line at a Time 272
Shorten Calling Chains Again 274
Things That Didn’t Help 275
Writing Files 276
Reading from std::cin and Writing to std::cout 277
Summary 278
. Optimize CONCUMTENCY. v v vt iiinin e e ii i inesienieassiensanns 279
Concurrency Refresher 280
A Walk Through the Concurrency Zoo 281

Table of Contents | xi

13. Optimize Memory Management.cvviuuiiiiinieeiinniiiinneennnenns

Interleaved Execution
Sequential Consistency
Races

Synchronization
Atomicity

C++ Concurrency Facilities Refresher

Threads

Promises and Futures

Asynchronous Tasks

Mutexes

Locks

Condition Variables

Atomic Operations on Shared Variables

On Deck: Future C++ Concurrency Features

Optimize Threaded C++ Programs

Prefer std::async to std::thread

Create as Many Runnable Threads as Cores
Implement a Task Queue and Thread Pool
Perform I/O in a Separate Thread

Program Without Synchronization
Remove Code from Startup and Shutdown

Make Synchronization More Efficient

Reduce the Scope of Critical Sections

Limit the Number of Concurrent Threads
Avoid the Thundering Herd

Avoid Lock Convoys

Reduce Contention

Don’t Busy-Wait on a Single-Core System
Don’t Wait Forever

Rolling Your Own Mutex May Be Ineffective
Limit Producer Output Queue Length

Concurrency Libraries
Summary

C++ Memory Management API Refresher

The Life Cycle of Dynamic Variables

Memory Management Functions Allocate and Free Memory
New-Expressions Construct Dynamic Variables
Delete-Expressions Dispose of Dynamic Variables

Explicit Destructor Calls Destroy Dynamic Variables

High-Performance Memory Managers

285
286
287
288
289
291
291
292
295
296
297
298
301
304
305
306
308
309
310
310
313
314
314
315
316
317
317
319
319
319
320
320
322

323
324
324
325
328
331
332
333

xii

Table of Contents

Provide Class-Specific Memory Managers 335
Fixed-Size-Block Memory Manager 336
Block Arena 338
Adding a Class-Specific operator new() 340
Performance of the Fixed-Block Memory Manager 342
Variations on the Fixed-Block Memory Manager 342
Non-Thread Safe Memory Managers Are Efficient 343

Provide Custom Standard Library Allocators 343
Minimal C++11 Allocator 346
Additional Definitions for C++98 Allocator 347
A Fixed-Block Allocator 352
A Fixed-Block Allocator for Strings 354

Summary 355

Index........ooovvnns i 5208 808 30 P A 0 s 2o 2 0 998 o o aorip 8 marened 2T o i el 2on e 357

Table of Contents

Xiii

