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Everyone thanks their spouse for helping make a book possible. It’s trite, I know. My wife
Renee Ostler made this book possible by giving me permission to take months off work,
by giving me time and space to focus on writing, and by staying up late asking me ques-
tions about optimizing C++ code, even though she wasn't particularly engaged by the
topic, just to show her support. She made this project important to her because it was
important to me. No author could ask for more.



Preface

Hi. My name is Kurt, and 'm a code-aholic.

I have been writing software for over 35 years. I've never worked at Microsoft, or
Google, Facebook, Apple, or anywhere else famous. But beyond a few short vacations,
I have written code every day of that time. I have spent the last 20 years almost exclu-
sively writing C++ and talking to other very bright developers about C++. This is my
qualification to write a book about optimizing C++ code. I have also written a lot of
English prose, including specifications, comments, manuals, notes, and blog posts
(http://oldhandsblog.blogspot.com). It has amazed me from time to time that only half
of the bright, competent developers I have worked with can string two grammatical
English sentences together.

One of my favorite quotes comes by way of a letter from Sir Isaac Newton, in which
he writes, “If I have seen farther, it is by standing on the shoulders of giants” I too
have stood on the shoulders of giants, and particularly have read their book: elegant
little books, like Brian Kernighan and Dennis Ritchie’s The C Programming Language;
smart, ahead-of-the-curve books, like Scott Meyers’s Effective C++ series; challenging,
mind-expanding books, like Andrei Alexandrescu’s Modern C++ Design; careful, pre-
cise books, like Bjarne Stroustrup and Margaret Ellis's The Annotated C++ Reference
Manual. For most of my career, it never crossed my mind that I might someday write
a book. Then one day, quite suddenly, I found I needed to write this one.

So why write a book about performance tuning in C++?

At the dawn of the 21* century, C++ was under assault. Fans of C pointed to C++
programs whose performance was inferior to supposedly equivalent code written in
C. Famous corporations with big marketing budgets touted proprietary object-
oriented languages, claiming C++ was too hard to use, and that their tools were the
future. Universities settled on Java for teaching because it came with a free toolchain.
As a result of all this buzz, big companies made big-money bets on coding websites
and operating systems in Java or C# or PHP. C++ seemed to be on the wane. It was an
uncomfortable time for anyone who believed C++ was a powerful, useful tool.




Then a funny thing happened. Processor cores stopped getting faster, but workloads
kept growing. Those same companies began hiring C++ programmers to solve their
scaling issues. The cost of rewriting code from scratch in C++ became less than the
cost of the electricity going into their data centers. All of a sudden, C++ was popular
again.

Uniquely among programming languages in wide use in early 2016, C++ offers devel-
opers a continuum of implementation choices, ranging from hands-off, automated
support to fine manual control. C++ empowers developers to take control of perfor-
mance trade-offs. This control makes optimization possible.

There are not many books on optimization of C++ code. One of the few is Bulka and
Mayhew’s meticulously researched but now somewhat dated Optimizing C++. The
authors appear to have had similar career experiences to mine, and discovered many
of the same principles. For readers who are interested in another take on the issues in
this book, their book is a good place to start. Also, Scott Meyers, among many others,
covers avoiding copy construction extensively and well.

There are enough different things to know about optimization to fill 10 books. I have
tried to pick and choose things that seemed to occur frequently in my own work, or
that offered the biggest performance wins. To the many readers with their own per-
formance tuning war stories who may wonder why I've said nothing about strategies
that worked miracles for them, all I can say is, so little time, so much to tell.

I welcome your errata, comments, and favorite optimization strategies at
antelope_book@guntheroth.com.

I love the craft of software development. I enjoy endlessly practicing the kata of each
new loop or interface. At the corner of Sonnet and Science, writing code is a skill so
esoteric, an art form so internal, that almost nobody but another practitioner can
appreciate it. There is beauty in an elegantly coded function, and wisdom in a power-
ful idiom well used. Sadly, though, for every epic software poem like Stepanov’s Stan-
dard Template Library, there are 10,000 drab tomes of uninspired code.

The root purpose of this book is to give every reader permission to think a little
harder about the beauty of well-tuned software. Take it and run with it. See farther!

Apology for the Code in This Book

Although I have been writing and optimizing C++ code for over 20 years, most of the
code appearing in this book was developed specifically for this book. Like all new
code, it surely contains defects. I offer my apologies.

I have developed for Windows, Linux, and various embedded systems over the years.
The code presented in this book was developed on Windows. The code and the book
no doubt show a Windows bias. The lessons of how to optimize C++ code that are
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illustrated using Visual Studio on Windows apply equally to Linux, Mac OS X, or any
other C++ environment. However, the precise timings of different optimizations
depend on the compiler and standard library implementation, and the processor on
which the code is tested. Optimization is an experimental science. Taking optimiza-
tion advice on faith is fraught with negative surprises.

I am aware that compatibility with various other compilers, and with other Unix and
embedded systems, can be challenging, and I apologize if the code does not compile
on your favorite system. Since this book is not about cross-system compatibility, I
have erred on the side of presenting simple code.

The curly-brace indentation style shown here is not my favorite:

if (bool_condition) {
controlled_statement();

}

However, because it has the advantage of putting the most lines possible on the
printed page, I have chosen to use it for the examples throughout this book.

Using Code Examples

Supplemental material (code examples, sample solutions, etc.) is available for down-
load at www.guntheroth.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O'Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Optimized C++ by Kurt Guntheroth
(O’Reilly). Copyright 2016 Kurt Guntheroth, 978-1-491-92206-4”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
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Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Used for menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Control).

Italic
Indicates new terms, URLs, email addresses, pathnames, filenames, and file
extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.
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