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Preface

We are pleased to bring this second edition with an updated coverage of the recent
developments in this field. After the initial questions regarding the applicability of
macroscopic formulation were addressed, the research has focused on topics that
utilize the microscale behavior for understanding the transport processes. New
advances are reported on the fundamental understanding and experimental analysis
of the gas flow and heat transfer at microscale, transport modeling and roughness
effects. Sections on enhancement of single-phase liquid heat transfer, axial conduc-
tion effects, entrance region effects, nanofluids, and roughness effects have been
updated to include some of the recent work. The chapter on electrokinetic flows
has been updated to include a new section on electroosmotic flows considering the
Joule heating effects. Significant new developments made in flow boiling in micro-
channels, including scale effects, nanofluids, enhancements, stability considera-
tions, CHF modeling, flow boiling enhancement techniques, and a new
configuration providing a new level of enhancement exceeding 500 W/cm2 limit
have been included. The chapter on condensation has been streamlined to focus
more closely on mini and microchannel geometries, and expanded to include some
of the latest developments in experimentation and modeling efforts. The biomedi-
cal applications in Chapter 7 have been expanded significantly to present the
advancements in fluid mechanics modeling in this field.

The authors are thankful to many researchers who have provided feedback on
the second edition. We believe that the readers will find this edition as a timely
and updated resource that is useful to researchers as well as designers of micro-
fluidic transport devices.

Satish G. Kandlikar
Srinivas Garimella
Dongqing Li
Stephane Colin
Michael King
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Nomenclature

A
A,B,C,D, F

ay, az, az

a, . .as

Section area, m” (Chapters 2 and 6).

Equation coefficients and exponents (Chapters 3 and 7).
First-order slip coefficient, dimensionless (Chapter 2).
Second-order slip coefficient, dimensionless (Chapter 2).
High-order slip coefficient, dimensionless (Chapter 2).
Cross-sectional area, m’ (Chapter 3).

Total plenum cross-sectional area, m’ (Chapter 3).

Total heat transfer surface area (Chapter 5).

Speed of sound, m/s (Chapter 2); channel width, m (Chapter 3);
equation constant in Eqgs. (6.71), (6.83), and (6.87) (Chapter 6):
coefficient in entrance length equations, dimensionless (Chapter 7).
Aspect ratio of rectangular sections, dimensionless, a* = h/b
(Chapter 2).

Coefficients for the mass flow rate in a rectangular microchannel,
dimensionless (Chapter 2).

Coefficients in Eq. (6.107) (Chapter 6).

Parameter used in Egs. (6.9) and (6.41) (Chapter 6).

Parameter used in Eq. (6.21) (Chapter 6).

Coefficient in cell surface oxygen concentration equation
(Chapter 7).

Half-channel width, m (Chapter 2); channel height, m (Chapter 3);
constant in Egs. (6.71), (6.83), and (6.87) (Chapter 6).

Boiling number, dimensionless, Bo = ¢"/(Ghyy) (Chapter 5).
Bond number, dimensionless, Bo = (p;. — py)gDy’/o (Chapter 5):
Bo = g(p. — p(;)((d/2)2/a) (Chapter 6).

Constant, dimensionless (Chapter 1); coefficient in a Nusselt
number correlation (Chapter 3); concentration, mol/m’ (Chapters
4 and 7); Chisholm’s parameter, dimensionless (Chapter 5);
constant used in Egs. (6.39), (6.40), and (6.157) (Chapter 6).
Reference concentration, mol/m” (Chapter 4).

Ratio of experimental and theoretical apparent friction factors,
dimensionless, C* = f,,p ex/fappans (Chapter 3); nondimensiona-
lized concentration, C* = C(x, y)/C;, (Chapter 7).

Oxygen concentration at the lower channel wall, mol/m?
(Chapter 7).

Empirically derived constants in Eq. (6.35) (Chapter 6); parameter,
used in Eq. (6.54) (Chapter 6).

Coefficient of contraction, dimensionless (Chapter 6).
Nondimensionalized gas phase oxygen concentration, Cj, =
C,/C, (Chapter 7).
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Nomenclature

Friction factor, dimensionless (Chapter 2).

Convection number, dimensionless, C, = [(1 — x)/x]"’ [p\,/pL]“'5
(Chapter 5).

Confinement number, dimensionless, C, = \/o/g(p, — p,)/Dn
(Chapter 6).

Contraction coefficient, dimensionless (Chapter 5): distribution
parameter in drift flux model, dimensionless, C, = <aj>/
(< a> <j>) (Chapter 6).

Specific heat capacity at a constant pressure, J/kg K (Chapter 6).
Saturation oxygen concentration, mol/m” (Chapter 7).

Mean square molecular speed, m/s (Chapter 2); constant in
the thermal entry length equation, dimensionless (Chapter 3);
constant in Eq. (6.57) (Chapter 6).

Molecular thermal velocity vector m/s (Chapter 2).

Mean thermal velocity, m/s (Chapter 2).

Coefficients used in Eq. (6.133) (Chapter 6).

Specific heat at a constant pressure, J/kg K (Chapters 2, 3, and 5).
Specific heat at a constant volume, J/kg K (Chapter 2).
Capillary number, dimensionless, Ca = pV/a (Chapter 5).
Critical heat flux, W/m” (Chapter 5).

Diameter, m (Chapters 1, 3, 5 and 6).

Diffusion coefficient, diffusivity, m*/s (Chapters 2 and 4).
Diameter constricted by channel roughness. m, D= D—-2¢
(Chapter 3).

Hydraulic diameter, m (Chapters 1-5).

Laminar equivalent diameter, m (Chapter 3).

Mean molecular diameter, m (Chapter 2); diameter, m
(Chapter 6).

Departure bubble diameter, m (Chapter 5).

Applied electrical field strength, V/m (Chapter 4): total energy
per unit volume, I/m* (Chapter 2); diode efficiency, dimension-
less (Chapter 2); parameter used in Eq. (6.141) (Chapter 6).
Parameter used in Eq. (6.22) (Chapter 6).

Electric field strength, V/m (Chapter 4).

Internal specific energy, J/kg (Chapter 2); charge of a proton,
e=1.602x 10" C (Chapter 4).

Eotvos number, dimensionless, E():g(/)._—/)v)LZ/ﬂ in case of
liquid gas contact (Chapters 5 and 6).

Nondimensional constant accounting for an electrokinetic body
force (Chapter 4); general periodic function of unit magnitude
(Chapter 4); force, N (Chapters 5 and 6); modified Froude number,

H +q o Q — /’\‘ ll( S - 3
CINS S8, - - —— ¢ > L ostress  rato,
dimensionless, F (/'. = n) ( ﬂ) (Chapter 6): stress ratic

dimensionless, F = 7,/(p gd) (Chapter 6); parameter used in



Fr,

=l
)

.

Nomenclature

Eq. (6.141) (Chapter 6); external force acting on a spherical cell, N
(Chapter 7).

External force per unit mass vector, N/kg (Chapter 2).

Interfacial force created by evaporation momentum, N (Chapter 5).
Interfacial force created by surface tension, N (Chapter 5).
Fluid-surface parameter accounting for the nucleation character-
istics of different fluid surface combinations, dimensionless
(Chapter 5).

Function of the liquid volume fraction and the vapor Reynolds
number, used in Eq. (6.128) (Chapter 6).

Dimensionless parameter of Eq. (6.112) (Chapter 6).

Electrical force per unit volume of the liquid, N/m* (Chapter 4).
Volume force vector, N/m> (Chapter 2).

Fanning friction factor, dimensionless (Chapters 1, 3, and 5);
single-phase friction factor, dimensionless (Chapter 6).

Apparent friction factor accounting for developing flows, dimen-
sionless (Chapter 3).

Frequency, Hz (Chapter 2); velocity distribution function
(Chapter 2).

Superticial liquid phase friction factor, dimensionless (Chapter 6).
Floor distance to mean line in roughness elcmente m (Chapter 3).
Liquid Froude number, dimensionless, Fri = V,/gé (Chapter 6).
Modified Froude number, dimensionless (Chapter 6).

Soliman modified Froude number, dimensionless (Chapter 6).
Froude rate, dimensionless F, = [G*x* /(1 —x)p; 2¢D]" (Chapter 6).
Mass flux, kg/m S (Chaplcrs 1, 5, and 6).

Equivalent mass flux, kg/m?s, Geq= G, + G’y (Chapter 6).
Mass flux that produces the same interfacial shear stress as a
vapor core, kg/m* s, G} = Gy\/p,/py\/fu/fi (Chapter 6).

Total mass flux, kg/m2 s (Chapter 6).

Acceleration due to gravity, m/s”* (Chapters 5 and 6).

Liquid Galileo number, dimensionless, Ga, = gD*/v,* (Chapter 6).
Maximum height, m (Chapter 4); distance between parallel
plates or height, m (Chapter 7); parameter used in Eq. (6.141)
(Chapter 6).

Heat transfer coefficient, W/m> K (Chapters 1, 3, 5, and 6); chan-
nel half-depth, m (Chapter 2); specific enthalpy, J/kg (Chapters 2
and 5); wave height, m (Chapter 7).

Average heat transfer coefficient, W/m K (Chapters 3 and 6).
Film heat transfer coefficient, W/m?® K (Chapter 6).

Latent heat of vaporization, J/kg (Chapter 6).

Gas-phase height in channel, m, hg=7/4\/c/pg(1 —7/4)
(Chapter 6).
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Nomenclature

hyy

h'yy

N = N

Jwda

ky

k>

kg, Ky,
Kn
Kn'

Ku

Latent heat of vaporization at p;, J/kg (Chapter 5).

Specific enthalpy of vaporization, J/kg (Chapter 6).
Modified specific enthalpy of vaporization, J/kg (Chapter 6).
Unit tensor, dimensionless (Chapter 2).

Current, A (Chapter 3).

Enthalpy, J/kg (Chapter 5).

Mass flux vector, kg/m” s (Chapter 2).
Electrical current, A (Chapter 4).

Superficial velocity, m/s (Chapters 5 and 6).
Wallis dimensionless gas velocity, /L =Gx/
(Chapter 6).
Jakob  number,
(Chapter 5).
Liquid Jakob number, dimensionless, Ja; = ¢y (T — 7.)/hy,
(Chapter 6).

Nondimensional double layer thickness, K = Dy~ (Chapter 4);
constant in Egs. (6.56) and (6.95) (Chapter 6).

Incremental pressure defect. dimensionless (Chapter 3).
Hagenbach’s factor, dimensionless, K(x) when x > L, (Chapter 3).
Ratio of evaporation momentum to inertia forces at the
liquid—vapor interface, dimensionless, K; = (¢"/Ghv )Z/JL//)V
(Chapter 5).

Ratio of evaporation momentum to surface tension forces at the
liquid—vapor interface, dimensionless, Ko = (¢ /h.v)* D/pyo
(Chapter 5).

Loss coefficient at a 90" bend, dimensionless (Chapter 3).
Contraction loss coefficient due to an area change, dimension-
less (Chapter 3).

Expansion loss coefficient due to an arca change, dimensionless
(Chapter 3).

Michaelis constant, mol/m” (Chapter 7).

Thermal conductivity, W/mK (Chapters 13, 5, and 6): con-
stant, dimensionless (Chapter 7).

Coefficient in the collision rate expression. dimensionless
(Chapter 2).

Coefficient in the mean free path expression. dimensionless
(Chapter 2).

Boltzmann constant, kg = 1.38065 J/K (Chapters 2 and 4).
Knudsen number, Kn = ML, dimensionless (Chapters | and 2).
Minimal representative length Knudsen number, Kn' = ML,
(Chapter 2).

Kutateladze number, dimensionless Ku = C, A T/h, (Chapter 6).
Length or characteristic length in a given system. m (Chapters 13

and 5—7): Laplace constant. m. L = /o /g(p, — p,) (Chapter 6).

Dgp(p; — p,)

dimensionless, Ja=(p, /p,) (¢, AT /hyy)



LG9 LL
Lcnh th Lhd

Ly
Ly
l

lgy
L.y, z
LHS
M

M

M,N
MW
m

N+
N
N conf

N()
n

ny, na, N3

Nomenclature

Gas and liquid slug lengths in the slug flow regime, m
(Chapter 6).

Hydrodynamically developing entrance length, m, L., = aHRe
(Chapters 2, 3, and 7).

Thermally developing entrance length, m, L,=cRePrD,
(Chapter 3).

Total pipette length, m (Chapter 7).

Microchannel length, m (Chapter 2).

Characteristic length of a sampling volume, m (Chapter 2).
Channel half height, m (Chapter 4).

Left-hand side (Chapter 7).

Molecular weight, kg/mol (Chapter 2).

Ratio of the electrical force to frictional force per unit volume,
dimensionless, M = 2n ., ze€D} /i1 UL (Chapter 4).

Equation exponents, dimensionless (Chapter 3).

Molecular weight, g/mol (Chapter 7).

Molecular mass, kg (Chapter 2); liquid volume fraction, dimension-
less (Chapter 6); dimensionless constant in Eq. (6.57) (Chapter 6).
Mass flow rate, kg/s (Chapters 2, 3, and 5).

Mass flow rate, n1/r,, dimensionless (Chapter 2).

Mass flow rate for a no-slip flow, kg/s (Chapter 2).

Mach number, dimensionless, Ma = u/a (Chapter 2).
Avogadro’s number, 6.022137 - 10* mol ™' (Chapter 2).
Molecular flux, 57! (Chapter 2).

Nondimensional positive species concentration (Chapter 4).
Nondimensional negative species concentration (Chapter 4).
Confinement number, dimensionless, Neonr = \/(r/(g(p, —p,))/Dy
(Chapter 6).

Cellular uptake rate, mol/m? s (Chapter 7).

Number density, m  (Chapter 2); number or number of channels,
dimensionless (Chapter 3); number of channels (Chapter 5); con-
stant in Egs. (6.41) and (6.57) (Chapter 6); number (Chapter 7).
Constant in Eq. (6.21) (Chapter 6).

Number concentration of type-i ion (Chapter 4).

Bulk ionic concentration of type-i ions (Chapter 4).

Normal vector in the x direction (Chapter 4).

Nusselt number, dimensionless, Nu = hDyp/k (Chapters 1-3, 5,
and 6).

Nusselt number under a constant heat flux boundary condition,
dimensionless (Chapter 3).

Nusselt number for high interfacial shear condensation, dimen-
sionless (Chapter 6).

Average Nusselt number along a plate of length L, dimension-
less (Chapter 6).
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Nomenclature

Nu,

NllT

Q Q.S

CHF

=

'y

Nusselt number for quiescent vapor condensation, dimension-
less, Nuy = [(Nuy") + (Nuy! )]'/" (Chapter 6).

Nusselt number for a turbulent film. dimensionless (Chapter 6).
Nusselt number under a constant wall temperature boundary
condition, dimensionless (Chapter 3).

Combined Nusselt number, dimensionless. Nu, = [(Nu!?)+
(Nu™)]"™ (Chapter 6).

Onset of nucleate boiling (Chapter 5).

Wetted perimeter, m (Chapter 2); dimensionless pressure
(Chapter 4): heated perimeter, m (Chapter 5); pressure, Pa
(Chapter 6).

Wetted perimeter, m (Chapter 3).

Pressure, Pa (Chapters | -3 and 5-7).

Reduced pressure, dimensionless (Chapter 6).

Péclet number. dimensionless, Pe = UH/D (Chapter 7).

Péclet number of fluid, dimensionless (Chapter 4).

Poiseuille number, dimensionless. Po = [ Re (Chapters 2 and 3).
Prandtl number, dimensionless, Pr = jicy/k (Chapters 2, 3.5, and 6).
Heat load, W (Chapter 3).

Volumetric flow rate, m'/s (Chapters 2, 3 and 7).

Heat flux vector, W/m? (Chapter 2).

Heat flux. W/m® (Chapter 2): dissipated power, W (Chapter 3);
constant in Eq. (6.60) (Chapter 6).

Volumetric flow rate per unit width, m*/s (Chapter 7).

Oxygen uptake rate on a per-cell basis, mol/s (Chapter 7).

Heat flux, W/m? (Chapters 5 and 6).

Critical heat flux, W/m” (Chapter 5).

Gas constant (Chapter 1); upstream to downstream flow resis-
tance, dimensionless (Chapter 5).

Specific gas constant, J/kg K. R = ¢, — ¢, (Chapter 2); radius, m
(Chapter 6).

Universal gas constant, 8.314511 J/mol K (Chapter 2).
Dimensionless pipe radius (Chapter 6).

Radii of curvature of fluid—liquid interface. m.

Mean profile peak height (Chapter 3); pipette radius, m (Chapter 7).
Maximum profile peak height of individual roughness elements,
m (Chapter 3).

Average maximum profile peak height of roughness elements.
m (Chapter 3).

Distance between two molecular centers, m (Chapter 2): radial
coordinate, radius, radius of cavity, m (Chapters 2 and 4-7);
constant in Eq. (6.60) (Chapter 6).

Bubble radius, m (Chapter 5).



rt

r

r2

Re, Re
Re*

Re*
Rem,

Reg. si
Rel, si
R8|

Re,,

Usi, Vi s
Ugj, Vg

Nomenclature

Cavity radius, m (Chapter 5).

Inner radius of an annular microtube, m (Chapter 2).

Outer radius of annular microtube or a circular microtube
radius, m (Chapter 2).

Average surface roughness, m (Chapter 3).

Reynolds number, dimensionless, Re = GD/; (Chapters 1-5
and 7).

Laminar equivalent Reynolds number, dimensionless, Re* =
pumDye/pe (Chapter 3).

Friction Reynolds number, dimensionless (Chapter 6).

Reynolds number based on hydraulic diameter, dimensionless
(Chapter 6).

Reynolds number based on superficial gas velocity at the inlet,
dimensionless (Chapter 6).

Reynolds number based on superficial liquid velocity at the
inlet, dimensionless (Chapter 6).

Liquid film Reynolds number, dimensionless, Re; = G(1 — x)D/
1y (Chapter 6).

Mixture Reynolds number, dimensionless, Rey, = GD/[iy,
(Chapter 6).

Transitional Reynolds number, dimensionless (Chapter 3).

Mean spacing of profile irregularities in roughness elements, m
(Chapter 3).

Slip ratio, dimensionless, S = Ug/Uy. (Chapter 6).

Fin width or distance between channels, m (Chapter 3); constant
in Eq. (6.60) (Chapter 6).

Schmidt number, dimensionless, Sc¢ = j/(pD) (Chapter 2).
Sherwood number, dimensionless, Sh = «H/D (Chapter 7).
Distance between two roughness element peaks, m (Chapter 3).
Stanton number, dimensionless, St = h/c,G (Chapter 3).
Temperature, K or “C (Chapters 1-6).

Liquid surface temperature, K or °C (Chapters 3 and 5); surface
temperature of tube wall, K or °C (Chapter 6).

Saturation temperature, K or “C (Chapters 5 and 6).

Wall superheat, K, ATs, = Tw — Tsy (Chapter 5).

Liquid subcooling, K, ATg,, = Tsy — T (Chapter 5).
Dimensionless temperature in condensate film (Chapter 6).
Time, s (Chapters 2 and 7).

Uncertainty (Chapter 3); reference velocity, m/s (Chapter 4); poten-
tial, such as gravity (Chapter 7); average velocity, m/s (Chapter 7).
Superficial liquid velocity, m/s (Chapter 6).

Drift velocity in drift flux model, m/s, vg = jo/a = Cy;+ Vg,
(Chapter 6).
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Nomenclature

Ugss Vi, s
u

Uyye
Uu-
[l:

*
Um
Uy

us
Uzg

Superficial gas velocity, m/s (Chapter 6).

Velocity, m/s (Chapters 2—4, 6, and 7).

Velocity vector, m/s (Chapter 2).

Average electroosmotic velocity, m/s (Chapter 4).

Mean axial velocity, m/s (Chapter 2).

Mean axial velocity, u—, =1 /u-), dimensionless (Chapter 2).
Friction velocity, m/s, u* = \/7;/p, (Chapter 6).

Mean flow velocity, m/s (Chapters 3 and 5).

Relative velocity between a large gas bubble and liquid in the
slug flow regime, m/s, u, = us — (ji + ji.) (Chapter 6).

Velocity of large gas bubble in slug flow regime, m/s (Chapter 6).
Maximum axial velocity with no-slip conditions, m/s (Chapter 2).
Overall heat transfer conductance, W/K (Chapter 6).

Voltage, V (Chapter 3); velocity, m/s (Chapters 5 and 6).
Nondimensional velocity, V = v/, (Chapter 4).

Average velocity of a liquid film, m/s (Chapter 6).

Zeroth-order uptake of oxygen by the hepatocytes (Chapter 7).
Velocity, m/s (Chapter 4).

Specific volume, = 1/p, m*/kg (Chapters 2 and 5); velocity,
m/s (Chapters 6 and 7).

Reference velocity, m/s (Chapter 4).

Difference between the specific volumes of the vapor and liquid
phases, m’ng. .G = VG — 1. (Chapter 5).

Maximum width, m (Chapters 3 and 4).

Velocity, m/s (Chapter 7).

Weber number, dimensionless, We = LG*/po (Chapter 5).
Weber number, dimensionless, We = pVs’D/o (Chapter 6).

Cell density (Chapter 7).

Martinelli parameter, dimensionless, X = {(dp/d,), /(d,/d,);} Iz
(Chapters 5 and 6).

Coordinate axes (Chapter 4).

Martinelli parameter for turbulent flow in the gas and liquid
phases, dimensionless (Chapter 6).

Mass quality, dimensionless (Chapters 5 and 6).

Position vector, m (Chapter 2).

Coordinate axes (Chapters 2—7); length (Chapter 6).
Cross-sectional coordinates, dimensionless (Chapter 2).
Dimensionless version of x, x* = x/RePrDy, (Chapter 3).
Dimensionless version of x, x* = x/Dy,/Re (Chapter 3).
Chisholm parameter, dimensionless, y = [dPy/dz];o/(dPr/dz), ]
(Chapter 6).

Dimensionless parameter in Eq. (6.22) (Chapter 6).

Bubble height, m (Chapter 5).
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Nomenclature

Distance to bubble stagnation point from heated wall, m
(Chapter 5).

Ohnesorge number, dimensionless, Z = ;L/(/)LJ)”2 (Chapter 5).
Heated length from the channel entrance, m (Chapter 5).

Axial coordinate, dimensionless (Chapter 2).

Valence of type-i ions (Chapter 4).

Greek Symbols
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Qpy Gy Q3

a(‘
O

ﬂly BZa :63
BA’ ,BB

r
i

AP
AP,JAP,

Ap
AT

A TSal
A TSuh
At

Ax

Convection heat transfer coefficient, W/m> K (Chapter 2); coef-
ficient in the VSS molecular model, dimensionless (Chapter 2);
aspect ratio, dimensionless (Chapter 6); void fraction, dimen-
sionless (Chapter 6).

Coefficients for the pressure distribution along a plane micro-
channel, dimensionless (Chapter 2).

Channel aspect ratio, dimensionless, a. = a/b (Chapter 3).
Eigenvalues for the velocity distribution in a rectangular micro-
channel, dimensionless (Chapter 2).

Radial void fraction, dimensionless, a,=0.8372+[1 —
(r/rw)””’] (Chapter 6).

Coefficient in the VSS molecular model, dimensionless (Chapter 2);
fin spacing ratio, dimensionless, 3= s/a (Chapter 3); angle with
horizontal (Chapter 5); homogeneous void fraction, dimensionless
(Chapter 6); velocity ratio, dimensionless (Chapter 6); multiplier to
transition line, dimensionless, 3(F, X) = constant, used by Sardesai
et al. (1981) (Chapter 6).

Coefficients for the pressure distribution along a circular micro-
tube, dimensionless (Chapter 2).

Empirically derived transition points for the Kariyasaki et al.
void fraction correlation (Chapter 6).

Euler or gamma function (Chapter 2).

Area ratio, dimensionless (Chapter 6); dimensionless length ratio,
v = L/H (Chapter 7); Specific heat ratio, dimensionless, v = ¢ /c,
(Chapter 2).

Pressure drop, Pa (Chapter 6).

Ratio of differential pressure between two system conditions
(Chapter 6).

Pressure drop, pressure difference, Pa (Chapters 1-3, 5, and 7).
Temperature difference, K (Chapter 6).

Wall superheat, K, ATg,, = Ty — T (Chapter 5).

Liquid subcooling, K, ATg, = Tw — Tsy (Chapter 5).

Elapsed time, s (Chapter 4).

Quality change, dimensionless (Chapter 6).



