Second Edition

Satish Kandlikar Srinivas Garimella Dongqing Li Stéphane Colin Michael R. King

Heat Transfer and Fluid Flow in Minichannels and Microchannels

Heat Transfer and Fluid Flow in Minichannels and Microchannels

Contributing Authors

Satish G. Kandlikar

Editor and Contributing Author Mechanical Engineering Department Rochester Institute of Technology, NY, USA

Srinivas Garimella

George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, USA

Dongqing Li

Department of Mechanical and Industrial Engineering
University of Toronto, Ontario, Canada

Stéphane Colin

Department of General Mechanic National Institute of Applied Sciences of Toulouse Toulouse cedex, France

Michael R. King

Departments of Biomedical Engineering, Chemical Engineering and Surgery University of Rochester, NY, USA

Butterworth-Heinemann is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA

First edition 2006

Copyright © 2014 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44)(0)1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting *Obtaining permission to use Elsevier material*.

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

Library of Congress Cataloging-in-Publication Data

A catalogue record for this book is available from the Library of Congress.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-08-098346-2

For information on all Butterworth-Heinemann publications visit our website at books, elsevier, com

Printed in the United States of America Transferred to Digital Printing, 2013

14 15 16 17 18 10 9 8 7 6 5 4 3 2 1

Heat Transfer and Fluid Flow in Minichannels and Microchannels

Elsevier Internet Homepage

http://www.elsevier.com

Consult the Elsevier homepage for full catalogue information on all books, journals and electronic products and services.

Elsevier Titles of Related Interest

Cho & Greene, Advances in Heat Transfer, 2011, ISBN 9780123815293 Serth, Process Heat Transfer: Principles, Applications and Rules of Thumb, 2007, 978-0-12-373588-1

Upp & LaNasa, Fluid Flow Measurement, 2nd Edition, 2002, ISBN 9780884157588

Related Journals

The following titles can all be found at: http://www.sciencedirect.com

Applied Thermal Engineering
Experimental Thermal and Fluid Science
Fluid Abstracts: Process Engineering
Fluid Dynamics Research
International Communications in Heat and Mass Transfer
International Journal of Heat and Fluid Flow
International Journal of Heat and Mass Transfer
International Journal of Multiphase Flow
International Journal of Refrigeration
International Journal of Thermal Sciences

To Contact the Publisher

Elsevier welcomes enquiries concerning publishing proposals: books, journal special issues, conference, proceedings, etc. All formats and media can be considered. Should you have a publishing proposal you wish to discuss, please contact, without obligation, the editor responsible for Elsevier's Mechanical Engineering publishing programme:

Hayley Gray
Senior Acquisitions Editor
S&T Books
Elsevier LTD
The Boulevard
Langford Lane
Kidlington
Oxford
OX5 1GB. UK
Tel: +44 1865 844731
E-mail: h.gray@elsevier.com

General enquiries, including placing orders, should be directed to Elsevier's Regional Sales Offices – please access the Elsevier Internet homepage for full contact details.

About the Authors

Satish Kandlikar Dr. Satish Kandlikar is the Gleason Professor of Mechanical Engineering at Rochester Institute of Technology. He obtained his B.E. degree from Marathawada University and M.Tech. and Ph.D. degrees from I.I.T. Bombay. His research focuses on flow boiling and single-phase heat transfer and fluid flow in microchannels, high flux cooling, and fundamentals of interfacial phenomena. He has published over 130 conference and journal papers, presented over 25 invited and keynote papers, has written contributed chapters in several handbooks, and has been editor-in-chief of a handbook on boiling and condensation. He is the recipient of the IBM Faculty award for the past three consecutive years. He received the Eisenhart Outstanding Teaching Award at RIT in 1997. He is an Associate Editor of several journals, including the *Journal of Heat Transfer*, Heat Transfer Engineering, Journal of Microfluidics and Nanofluidics, International Journal of Heat and Technology, and Microscale Thermophysical Engineering. He is a Fellow member of ASME.

Srinivas Garimella Dr. Srinivas Garimella is the Hightower Chair in Engineering and Director of the Sustainable Thermal Systems Laboratory at Georgia Institute of Technology. He received M. S. and Ph.D. degrees from The Ohio State University, and a Bachelor's degree from the Indian Institute of Technology, Kanpur. He has held prior positions as Research Scientist at Battelle Memorial Institute, Senior Engineer at General Motors Corp., and Associate Professor at Western Michigan University and Iowa State University. He is a Fellow of the American Society of Mechanical Engineers, past Associate Editor of the ASME Journal of Heat Transfer, ASME Journal of Energy Resources Technology, and the ASHRAE HVAC&R Research Journal. He is currently the Editor of the International Journal of Air-conditioning and Refrigeration. He was Chair of the Advanced Energy Systems Division of ASME, and the ASHRAE Research Administration Committee. He conducts research in the areas of vapor-compression and absorption heat pumps, phase-change in microchannels, heat and mass transfer in binary fluids, waste heat recovery, and sustainable energy systems. He has mentored over 60 graduate students, with his research resulting in over 175 archival journal and conference publications, and he has been awarded five patents. He is the recipient of the NSF CAREER Award, the ASHRAE New Investigator Award, the SAE Ralph E. Teetor Educational Award for Engineering Educators, and was the Iowa State University Miller Faculty Fellow and Woodruff Faculty Fellow at Georgia Tech. He received the ASME Award for Outstanding Research Contributions in the Field of Two-Phase Flow and Condensation in Microchannels, 2012. He also received the Thomas French Distinguished Educator Achievement Award from The Ohio State University, and the Zeigler Outstanding Educator Award (2012) at Georgia Tech.

Dongqing Li Dr. Dongqing Li obtained his B.A. and M.Sc. degrees in Thermophysics Engineering in China, and his Ph.D. degree in Thermodynamics from the University of Toronto, Canada, in 1991. He was a professor at the University of Alberta and later at the University of Toronto from 1993 to 2005. Currently, Dr. Li is the H. Fort Flowers Professor of Mechanical Engineering, Vanderbilt University. His research is in the areas of microfluidics and lab-on-a-chip. Dr. Li has published one book, 11 book chapters, and over 160 journal papers. He is the Editor-in-Chief of the international journal *Microfluidics and Nanofluidics*.

Stéphane Colin Dr. Stéphane Colin is a Professor of Mechanical Engineering at the National Institute of Applied Sciences (INSA) of Toulouse, France. He obtained his Engineering degree in 1987 and received his Ph.D. degree in Fluid Mechanics from the Polytechnic National Institute of Toulouse in 1992. In 1999, he created the Microfluidics Group of the Hydrotechnic Society of France, and he currently leads this group. He is the Assistant Director of the Mechanical Engineering Laboratory of Toulouse. His research is in the area of microfluidics. Dr. Colin is editor of the book *Microfluidique*, published by Hermes Science Publications.

Michael King Dr. Michael King is an Assistant Professor of Biomedical Engineering and Chemical Engineering at the University of Rochester. He received a B.S. degree from the University of Rochester and a Ph.D. from the University of Notre Dame, both in chemical engineering. At the University of Pennsylvania, Dr. King received an Individual National Research Service Award from the NIH. He is a Whitaker Investigator, a James D. Watson Investigator of New York State, and is a recipient of the NSF CAREER Award. He is editor of the book *Principles of Cellular Engineering: Understanding the Biomolecular Interface*, published by Academic Press. His research interests include biofluid mechanics and cell adhesion.

Preface

We are pleased to bring this second edition with an updated coverage of the recent developments in this field. After the initial questions regarding the applicability of macroscopic formulation were addressed, the research has focused on topics that utilize the microscale behavior for understanding the transport processes. New advances are reported on the fundamental understanding and experimental analysis of the gas flow and heat transfer at microscale, transport modeling and roughness effects. Sections on enhancement of single-phase liquid heat transfer, axial conduction effects, entrance region effects, nanofluids, and roughness effects have been updated to include some of the recent work. The chapter on electrokinetic flows has been updated to include a new section on electroosmotic flows considering the Joule heating effects. Significant new developments made in flow boiling in microchannels, including scale effects, nanofluids, enhancements, stability considerations, CHF modeling, flow boiling enhancement techniques, and a new configuration providing a new level of enhancement exceeding 500 W/cm2 limit have been included. The chapter on condensation has been streamlined to focus more closely on mini and microchannel geometries, and expanded to include some of the latest developments in experimentation and modeling efforts. The biomedical applications in Chapter 7 have been expanded significantly to present the advancements in fluid mechanics modeling in this field.

The authors are thankful to many researchers who have provided feedback on the second edition. We believe that the readers will find this edition as a timely and updated resource that is useful to researchers as well as designers of microfluidic transport devices.

> Satish G. Kandlikar Srinivas Garimella Dongqing Li Stéphane Colin Michael King

Nomenclature

9	
A	Section area, m ² (Chapters 2 and 6).
A, B, C, D, F	Equation coefficients and exponents (Chapters 3 and 7).
A_1	First-order slip coefficient, dimensionless (Chapter 2).
A_2	Second-order slip coefficient, dimensionless (Chapter 2).
A_3	High-order slip coefficient, dimensionless (Chapter 2).
$A_{\rm c}$	Cross-sectional area, m ² (Chapter 3).
	Total plenum cross-sectional area, m ² (Chapter 3).
$A_{\mathbf{p}}$	
A_{T}	Total heat transfer surface area (Chapter 5).
a	Speed of sound, m/s (Chapter 2); channel width, m (Chapter 3);
	equation constant in Eqs. (6.71), (6.83), and (6.87) (Chapter 6);
	coefficient in entrance length equations, dimensionless (Chapter 7).
a^*	Aspect ratio of rectangular sections, dimensionless, $a^* = h/b$
	(Chapter 2).
a_1, a_2, a_3	Coefficients for the mass flow rate in a rectangular microchannel,
	dimensionless (Chapter 2),
$a_1 \dots a_5$	Coefficients in Eq. (6.107) (Chapter 6).
B	Parameter used in Eqs. (6.9) and (6.41) (Chapter 6).
B_{B}	Parameter used in Eq. (6.21) (Chapter 6).
$B_{\rm n}$	Coefficient in cell surface oxygen concentration equation
	(Chapter 7).
b	Half-channel width, m (Chapter 2); channel height, m (Chapter 3);
	constant in Eqs. (6.71), (6.83), and (6.87) (Chapter 6).
Bo	Boiling number, dimensionless, Bo = $q''/(Gh_{LV})$ (Chapter 5).
Bo	Bond number, dimensionless, $Bo = (\rho_L - \rho_V)gD_h^2/\sigma$ (Chapter 5);
200	Bo = $g(\rho_L - \rho_G)((d/2)^2/\sigma)$ (Chapter 6).
C, C	Constant, dimensionless (Chapter 1); coefficient in a Nusselt
C, C	number correlation (Chapter 3); concentration, mol/m ³ (Chapters
	4 and 7); Chisholm's parameter, dimensionless (Chapter 5);
	constant used in Eqs. (6.39), (6.40), and (6.157) (Chapter 6).
C	Reference concentration, mol/m ³ (Chapter 4).
C*	
C_0	
	(Chapter 7).
C_1, C_2	Empirically derived constants in Eq. (6.35) (Chapter 6); parameter,
	used in Eq. (6.54) (Chapter 6).
$C_{\mathbf{C}}$	Coefficient of contraction, dimensionless (Chapter 6).
	Nondimensionalized gas phase oxygen concentration, C_{in} =
	\tilde{C}_g/C_g (Chapter 7).
C^* C_0 C_1, C_2	Ratio of experimental and theoretical apparent friction factors, dimensionless, $C^* = f_{\rm app,ex}/f_{\rm app,th}$, (Chapter 3); nondimensionalized concentration, $C^* = C(x,y)/C_{\rm in}$ (Chapter 7). Oxygen concentration at the lower channel wall, mol/m³ (Chapter 7). Empirically derived constants in Eq. (6.35) (Chapter 6); parameter, used in Eq. (6.54) (Chapter 6). Coefficient of contraction, dimensionless (Chapter 6). Nondimensionalized gas phase oxygen concentration, $C_{\rm in} =$

C_f	Friction factor, dimensionless (Chapter 2).
Co	Convection number, dimensionless, $C_0 = [(1 - x)/x]^{0.9} [\rho_V/\rho_L]^{0.5}$
	(Chapter 5).
Co	Confinement number, dimensionless, $C_0 = \sqrt{\sigma/g(\rho_1 - \rho_v)}/D_h$
	(Chapter 6).
C_{o}	Contraction coefficient, dimensionless (Chapter 5); distribution
	parameter in drift flux model, dimensionless, $C_0 = \langle \alpha j \rangle /$
	$(<\alpha>< j>)$ (Chapter 6).
$C_{\mathbf{p}}$	Specific heat capacity at a constant pressure, J/kg K (Chapter 6).
$C_{ m p} \ C_{ m S}$	Saturation oxygen concentration, mol/m ³ (Chapter 7).
c	Mean square molecular speed, m/s (Chapter 2); constant in
	the thermal entry length equation, dimensionless (Chapter 3);
	constant in Eq. (6.57) (Chapter 6).
c'	Molecular thermal velocity vector m/s (Chapter 2).
$\frac{c'}{c'}$	Mean thermal velocity, m/s (Chapter 2).
c_1, c_2	Coefficients used in Eq. (6.133) (Chapter 6).
$c_{\mathbf{p}}$	Specific heat at a constant pressure, J/kg K (Chapters 2, 3, and 5).
$c_{\rm v}$	Specific heat at a constant volume, J/kg K (Chapter 2).
Ca	Capillary number, dimensionless, $Ca = \mu V/\sigma$ (Chapter 5).
CHF	Critical heat flux, W/m ² (Chapter 5).
D	Diameter, m (Chapters 1, 3, 5 and 6).
D,D^+,D^-	Diffusion coefficient, diffusivity, m ² /s (Chapters 2 and 4).
$D_{ m cf}$	Diameter constricted by channel roughness, m, $D_{cf} = D - 2\varepsilon$
	(Chapter 3).
$D_{ m h}, D_{ m H}$	Hydraulic diameter, m (Chapters 1–5).
D_{1e}	Laminar equivalent diameter, m (Chapter 3).
d	Mean molecular diameter, m (Chapter 2); diameter, m
	(Chapter 6).
d_{B}	Departure bubble diameter, m (Chapter 5).
E	Applied electrical field strength, V/m (Chapter 4); total energy
	per unit volume, J/m3 (Chapter 2); diode efficiency, dimension-
	less (Chapter 2); parameter used in Eq. (6.141) (Chapter 6).
E_{1}, E_{2}	Parameter used in Eq. (6.22) (Chapter 6).
E_x	Electric field strength, V/m (Chapter 4).
e	Internal specific energy, J/kg (Chapter 2); charge of a proton,
	$e = 1.602 \times 10^{-19} \text{ C (Chapter 4)}.$
Eo, Eo	Eotvos number, dimensionless, $Eo = g(\rho_L - \rho_V)L^2/\sigma$ in case of
	liquid gas contact (Chapters 5 and 6).
\mathbf{F}, \mathbf{F}	Nondimensional constant accounting for an electrokinetic body
	force (Chapter 4); general periodic function of unit magnitude
	(Chapter 4); force, N (Chapters 5 and 6); modified Froude number,
	dimensionless, $F = \sqrt{\left(\frac{\rho_g}{\rho_1 - \rho_g}\right)} \left(\frac{U_{GS}}{\sqrt{D_g}}\right)$ (Chapter 6); stress ratio,
	dimensionless, $F = \tau_{\rm w}/(\rho_{\rm L} g \delta)$ (Chapter 6); parameter used in
	W M 460 V 5 - 06 V 7 E

	Eq. (6.141) (Chapter 6); external force acting on a spherical cell, N
E	(Chapter 7).
F	External force per unit mass vector, N/kg (Chapter 2).
$F'_{ m M} \ F'_{ m S}$	Interfacial force created by evaporation momentum, N (Chapter 5). Interfacial force created by surface tension, N (Chapter 5).
	Fluid-surface parameter accounting for the nucleation character-
$F_{ m F1}$	istics of different fluid surface combinations, dimensionless
	(Chapter 5).
F	Function of the liquid volume fraction and the vapor Reynolds
$F_{ m g}$	number, used in Eq. (6.128) (Chapter 6).
F_{T}	Dimensionless parameter of Eq. (6.112) (Chapter 6).
F	Electrical force per unit volume of the liquid, N/m ³ (Chapter 4).
f	Volume force vector, N/m ³ (Chapter 2).
f	Fanning friction factor, dimensionless (Chapters 1, 3, and 5);
J	single-phase friction factor, dimensionless (Chapter 6).
$f_{ m app}$	Apparent friction factor accounting for developing flows, dimen-
ларр	sionless (Chapter 3).
f	Frequency, Hz (Chapter 2); velocity distribution function
	(Chapter 2).
$f_{ m ls}$	Superficial liquid phase friction factor, dimensionless (Chapter 6).
$F_{\mathbf{p}}$	Floor distance to mean line in roughness elements, m (Chapter 3).
Fr_1	Liquid Froude number, dimensionless, $Fr_1^2 = \overline{V}_1^2/g\delta$ (Chapter 6).
$Fr_{ m m}$	Modified Froude number, dimensionless (Chapter 6).
Fr_{so}	Soliman modified Froude number, dimensionless (Chapter 6).
$F_{\mathbf{t}}$	Froude rate, dimensionless $F_1 = [G^2 x^3/(1-x)\rho_g^2 gD]^{0.5}$ (Chapter 6).
G	Mass flux, kg/m ² s (Chapters 1, 5, and 6).
$G_{ m eq}$	Equivalent mass flux, kg/m ² s, $G_{eq} = G_1 + G'_1$ (Chapter 6).
G'_1	Mass flux that produces the same interfacial shear stress as a
	vapor core, kg/m ² s, $G'_1 = G_v \sqrt{\rho_1/\rho_v} \sqrt{f_v/f_1}$ (Chapter 6).
$G_{\mathbf{t}}$	Total mass flux, kg/m ² s (Chapter 6).
g	Acceleration due to gravity, m/s ² (Chapters 5 and 6).
Ga_1	Liquid Galileo number, dimensionless, $Ga_1 = gD^3/v_1^2$ (Chapter 6).
H	Maximum height, m (Chapter 4); distance between parallel
	plates or height, m (Chapter 7); parameter used in Eq. (6.141)
1.	(Chapter 6). Heat transfer coefficient, W/m ² K (Chapters 1, 3, 5, and 6); chan-
h	
	nel half-depth, m (Chapter 2); specific enthalpy, J/kg (Chapters 2 and 5); wave height, m (Chapter 7).
\overline{h}	Average heat transfer coefficient, W/m ² K (Chapters 3 and 6).
$h_{\rm c}$	Film heat transfer coefficient, W/m ² K (Chapter 6).
h_{fg}	Latent heat of vaporization, J/kg (Chapter 6).
$h_{ m G}$	Gas-phase height in channel, m, $h_G \le \pi/4\sqrt{\sigma/\rho g(1-\pi/4)}$
G	(Chapter 6).
	v coorgines and

$egin{array}{lll} egin{array}{lll} egin{arra$	heat of vaporization at $p_{\rm L}$, J/kg (Chapter 5). The ice enthalpy of vaporization, J/kg (Chapter 6). The ice specific enthalpy of vaporization enthalpy of vaporization, J/kg (Chapter 6). The ice specific enthalpy of vaporization enthalpy of
(Chap	
Ja ₁ Liquid (Chap	Jakob number, dimensionless, $Ja_1 = c_{pL}(T_{sat} - T_s)/h_{1v}$ ter 6).
	mensional double layer thickness, $K = D_h \kappa$ (Chapter 4); nt in Eqs. (6.56) and (6.95) (Chapter 6).
K(x) Incren	nental pressure defect, dimensionless (Chapter 3).
$K(\infty)$ Hagen	bach's factor, dimensionless, $K(x)$ when $x > L_h$ (Chapter 3).
	of evaporation momentum to inertia forces at the -vapor interface, dimensionless, $K_1 = (q''/Gh_{LV})^2 \rho_L/\rho_V$ ter 5).
	of evaporation momentum to surface tension forces at the –vapor interface, dimensionless, $\mathbf{K}_2 = (q''/h_{\rm LV})^2 \ D/\rho_{\rm V} \sigma$ ter 5).
K_{90} Loss c	oefficient at a 90° bend, dimensionless (Chapter 3).
	action loss coefficient due to an area change, dimension- Chapter 3).
K _e Expan (Chap	sion loss coefficient due to an area change, dimensionless ter 3).
K _m Micha	elis constant, mol/m ³ (Chapter 7).
	al conductivity, W/mK (Chapters $1-3$, 5, and 6); condimensionless (Chapter 7).
k ₁ Coeffi (Chap	cient in the collision rate expression, dimensionless ter 2).
k ₂ Coeffi (Chap	cient in the mean free path expression, dimensionless ter 2).
$k_{\mathrm{B}}, \kappa_{\mathrm{b}}$ Boltzm	nann constant, $k_B = 1.38065 \text{ J/K}$ (Chapters 2 and 4).
Kn Knuds	en number, $Kn = \lambda/L$, dimensionless (Chapters 1 and 2).
Kn' Minim (Chap	hal representative length Knudsen number, $Kn' = \lambda l L_{min}$ ter 2).
Ku Kutate	ladze number, dimensionless $Ku = C_p \Delta T/h_{fg}$ (Chapter 6).
L Length	n or characteristic length in a given system, m (Chapters 1–3-7); Laplace constant, m, $L=\sqrt{\sigma/g(\rho_1-\rho_{\rm v})}$ (Chapter 6).

 $L_{\rm G}, L_{\rm L}$ Gas and liquid slug lengths in the slug flow regime, m

(Chapter 6).

 $L_{\text{ent}}, L_h, L_{hd}$ Hydrodynamically developing entrance length, m, $L_{ent} = aHRe$

(Chapters 2, 3, and 7).

 L_{t} Thermally developing entrance length, m, $L_t = cRePrD_h$

(Chapter 3).

Total pipette length, m (Chapter 7). L_{eq} Microchannel length, m (Chapter 2). 1

lsv Characteristic length of a sampling volume, m (Chapter 2).

 $l_{x, y, z}$ Channel half height, m (Chapter 4).

LHS Left-hand side (Chapter 7).

M Molecular weight, kg/mol (Chapter 2).

Ratio of the electrical force to frictional force per unit volume, M

dimensionless, $M = 2n_{\infty} ze\xi D_h^2/\mu UL$ (Chapter 4).

M, NEquation exponents, dimensionless (Chapter 3).

MW Molecular weight, g/mol (Chapter 7).

Molecular mass, kg (Chapter 2); liquid volume fraction, dimensionm

less (Chapter 6); dimensionless constant in Eq. (6.57) (Chapter 6).

 \dot{m} Mass flow rate, kg/s (Chapters 2, 3, and 5).

 \dot{m}^* Mass flow rate, $\dot{m}/\dot{m}_{\rm ps}$, dimensionless (Chapter 2). Mass flow rate for a no-slip flow, kg/s (Chapter 2). $\dot{m}_{\rm ns}$ Mach number, dimensionless, Ma = u/a (Chapter 2). Ma Avogadro's number, $6.022137 \cdot 10^{23} \text{ mol}^{-1}$ (Chapter 2). N

Molecular flux, s⁻¹ (Chapter 2). Ň

 N^{+} Nondimensional positive species concentration (Chapter 4). N^{-} Nondimensional negative species concentration (Chapter 4). $N_{\rm conf}$

Confinement number, dimensionless, $N_{\rm conf} = \sqrt{\sigma/(g(\rho_1 - \rho_{\rm v}))/D_h}$

(Chapter 6).

Cellular uptake rate, mol/m² s (Chapter 7). N_0

Number density, m⁻³ (Chapter 2); number or number of channels, n

dimensionless (Chapter 3); number of channels (Chapter 5); constant in Eqs. (6.41) and (6.57) (Chapter 6); number (Chapter 7).

Constant in Eq. (6.21) (Chapter 6). n_1, n_2, n_3

Number concentration of type-i ion (Chapter 4). n_i Bulk ionic concentration of type-i ions (Chapter 4). $n_{\rm io}$

Normal vector in the x direction (Chapter 4). n_x

Nusselt number, dimensionless, $Nu = hD_b/k$ (Chapters 1–3, 5, Nu

Nusselt number under a constant heat flux boundary condition, $Nu_{\rm H}$

dimensionless (Chapter 3).

Nusselt number for high interfacial shear condensation, dimen- Nu_i

sionless (Chapter 6).

NuL Average Nusselt number along a plate of length L, dimension-

less (Chapter 6).

Nu_{o}	Nusselt number for quiescent vapor condensation, dimension-
N.T	less, $Nu_0 = [(Nu_L^{n_1}) + (Nu_T^{n_1})]^{1/n_1}$ (Chapter 6).
Nu_{T}	Nusselt number for a turbulent film, dimensionless (Chapter 6).
Nu_{T}	Nusselt number under a constant wall temperature boundary condition, dimensionless (Chapter 3).
Nu_x	Combined Nusselt number, dimensionless, $Nu_x = [(Nu_0^{n_2}) + (Nu_i^{n_2})]^{1/n_2}$ (Chapter 6).
ONB	Onset of nucleate boiling (Chapter 5).
P	Wetted perimeter, m (Chapter 2); dimensionless pressure
	(Chapter 4); heated perimeter, m (Chapter 5); pressure, Pa
	(Chapter 6).
P_{w}	Wetted perimeter, m (Chapter 3).
p	Pressure, Pa (Chapters $1-3$ and $5-7$).
p_{R}	Reduced pressure, dimensionless (Chapter 6).
Pe	Péclet number, dimensionless, $Pe = UH/D$ (Chapter 7).
Pe_{F}	Péclet number of fluid, dimensionless (Chapter 4).
Po	Poiseuille number, dimensionless, $Po = f Re$ (Chapters 2 and 3).
Pr, Pr	Prandtl number, dimensionless, $Pr = \mu c_p / k$ (Chapters 2, 3, 5, and 6).
$Q \\ Q$	Heat load, W (Chapter 3).
	Volumetric flow rate, m ³ /s (Chapters 2, 3 and 7).
q	Heat flux vector, W/m ² (Chapter 2).
q	Heat flux, W/m ² (Chapter 2); dissipated power, W (Chapter 3);
	constant in Eq. (6.60) (Chapter 6).
q	Volumetric flow rate per unit width, m ² /s (Chapter 7).
q	Oxygen uptake rate on a per-cell basis, mol/s (Chapter 7).
$q''_{_{''}}$	Heat flux, W/m ² (Chapters 5 and 6).
q_{CHF}	Critical heat flux, W/m ² (Chapter 5).
R	Gas constant (Chapter 1); upstream to downstream flow resis-
D	tance, dimensionless (Chapter 5).
R	Specific gas constant, J/kg K, $R = c_p - c_v$ (Chapter 2); radius, m
D	(Chapter 6).
$R = R^+$	Universal gas constant, 8.314511 J/mol K (Chapter 2). Dimensionless pipe radius (Chapter 6).
R_1, R_2	Radii of curvature of fluid—liquid interface, m.
$R_{\rm p}$	Mean profile peak height (Chapter 3); pipette radius, m (Chapter 7).
$R_{\rm p,\ i}$	Maximum profile peak height of individual roughness elements,
24 p, 1	m (Chapter 3).
R_{pm}	Average maximum profile peak height of roughness elements,
- pm	m (Chapter 3).
r	Distance between two molecular centers, m (Chapter 2); radial
a .	coordinate, radius, radius of cavity, m (Chapters 2 and 4–7);
	constant in Eq. (6.60) (Chapter 6).
$r_{\rm b}$	Bubble radius, m (Chapter 5).
- 10	The state of the s

$r_{\rm c}$	Cavity radius, m (Chapter 5).
r_1	Inner radius of an annular microtube, m (Chapter 2).
r_2	Outer radius of annular microtube or a circular microtube
	radius, m (Chapter 2).
$R_{\rm a}$	Average surface roughness, m (Chapter 3).
Re, Re	Reynolds number, dimensionless, $Re = GD/\mu$ (Chapters 1–5
	and 7).
Re^*	Laminar equivalent Reynolds number, dimensionless, $Re^* =$
Re^+	$\rho u_{\rm m} D_{\rm le} / \mu$ (Chapter 3).
	Friction Reynolds number, dimensionless (Chapter 6).
Re_{Dh}	Reynolds number based on hydraulic diameter, dimensionless
D	(Chapter 6).
$Re_{ m g, \ si}$	Reynolds number based on superficial gas velocity at the inlet,
70	dimensionless (Chapter 6).
$Re_{\rm I, \ si}$	Reynolds number based on superficial liquid velocity at the
in.	inlet, dimensionless (Chapter 6).
Re_1	Liquid film Reynolds number, dimensionless, $Re_1 = G(1 - x)D/C$
	μ_1 (Chapter 6).
Re_{m}	Mixture Reynolds number, dimensionless, $Re_{\rm m} = GD/\mu_{\rm m}$
	(Chapter 6).
Re_{t}	Transitional Reynolds number, dimensionless (Chapter 3).
RS_m	Mean spacing of profile irregularities in roughness elements, m
~	(Chapter 3).
S	Slip ratio, dimensionless, $S = U_G/U_L$ (Chapter 6).
S	Fin width or distance between channels, m (Chapter 3); constant
~	in Eq. (6.60) (Chapter 6).
Sc	Schmidt number, dimensionless, $Sc = \mu l(\rho D)$ (Chapter 2).
Sh	Sherwood number, dimensionless, $Sh = \alpha H/D$ (Chapter 7).
Sm	Distance between two roughness element peaks, m (Chapter 3).
St	Stanton number, dimensionless, $St = h/c_pG$ (Chapter 3).
T	Temperature, K or °C (Chapters 1–6).
$T_{\rm s}$	Liquid surface temperature, K or °C (Chapters 3 and 5); surface
m	temperature of tube wall, K or °C (Chapter 6).
T_{sat}	Saturation temperature, K or °C (Chapters 5 and 6).
ΔT_{Sat}	Wall superheat, K, $\Delta T_{\text{Sat}} = T_{\text{W}} - T_{\text{Sat}}$ (Chapter 5).
$\Delta T_{ m Sub}$	Liquid subcooling, K, $\Delta T_{\text{Sub}} = T_{\text{Sat}} - T_{\text{B}}$ (Chapter 5).
T_{δ}^{+}	Dimensionless temperature in condensate film (Chapter 6).
t	Time, s (Chapters 2 and 7).
U	Uncertainty (Chapter 3); reference velocity, m/s (Chapter 4); potential, such as gravity (Chapter 7); average velocity, m/s (Chapter 7).
$U_{\rm SL}, V_{\rm L, S}$	Superficial liquid velocity, m/s (Chapter 6).
U_{Gj}, V_{Gj}	Drift velocity in drift flux model, m/s, $\nu_G = j_G/\alpha = C_{oj} + V_{Gj}$
-3-	(Chapter 6).
	: Mr. 17

377 37	Superficial and valority m/a (Chapter 6)
$U_{\mathrm{GS}},V_{\mathrm{G,S}}$	Superficial gas velocity, m/s (Chapter 6).
u	Velocity, m/s (Chapters 2–4, 6, and 7).
u	Velocity vector, m/s (Chapter 2).
$\overline{u}_{\text{ave}}$	Average electroosmotic velocity, m/s (Chapter 4).
$\frac{u_z}{u^*}$	Mean axial velocity, m/s (Chapter 2). Mean axial velocity, $\overline{u}_z^* = \overline{u}_z/u_{z0}$, dimensionless (Chapter 2).
$\frac{\overline{u}_z}{u_z^*}$ u^*	Friction velocity, $m_x = u_{z0}/u_{z0}$, difficulties (Chapter 2).
	Mean flow velocity, m/s (Chapters 3 and 5).
u _m	Relative velocity between a large gas bubble and liquid in the
$u_{\rm r}$	slug flow regime, m/s, $u_r = u_S - (j_G + j_L)$ (Chapter 6).
$u_{\rm S}$	Velocity of large gas bubble in slug flow regime, m/s (Chapter 6).
u_{z0}	Maximum axial velocity with no-slip conditions, m/s (Chapter 2).
$U_{ m A}$	Overall heat transfer conductance, W/K (Chapter 6).
V	Voltage, V (Chapter 3); velocity, m/s (Chapter 5).
V	Nondimensional velocity, $V = \nu/\nu_0$ (Chapter 4).
$\overline{\overline{V}}_1$	Average velocity of a liquid film, m/s (Chapter 6).
$V_{ m m}$	Zeroth-order uptake of oxygen by the hepatocytes (Chapter 7).
v	Velocity, m/s (Chapter 4).
ν	Specific volume, $\nu = 1/\rho$, m ³ /kg (Chapters 2 and 5); velocity,
	m/s (Chapters 6 and 7).
ν_0	Reference velocity, m/s (Chapter 4).
$ u_{ m LV}$	Difference between the specific volumes of the vapor and liquid
	phases, m ³ /kg, $\nu_{LG} = \nu_{G} - \nu_{L}$ (Chapter 5).
W	Maximum width, m (Chapters 3 and 4).
W	Velocity, m/s (Chapter 7).
We	Weber number, dimensionless, $We = LG^2/\rho\sigma$ (Chapter 5).
We	Weber number, dimensionless, $We = \rho V_S^2 D/\sigma$ (Chapter 6).
X	Cell density (Chapter 7).
X	Martinelli parameter, dimensionless, $X = \{(dp/d_Z)_L/(d_p/d_Z)_G\}^{1/2}$
	(Chapters 5 and 6).
X, Y, Z	Coordinate axes (Chapter 4).
X_{tt}	Martinelli parameter for turbulent flow in the gas and liquid
	phases, dimensionless (Chapter 6).
X	Mass quality, dimensionless (Chapters 5 and 6).
X	Position vector, m (Chapter 2).
x, y, z	Coordinate axes (Chapters 2–7); length (Chapter 6).
x^*, y^* x^*	Cross-sectional coordinates, dimensionless (Chapter 2). Dimensionless version of x , $x^* = x/RePrD_h$ (Chapter 3).
x ⁺	Dimensionless version of x , $x^+ = x/D_h/Re$ (Chapter 3).
Y	Chisholm parameter, dimensionless, $y = [dP_F/dz]_{GO}/(dP_F/dz)_{LO}$
×	(Chapter 6).
v	Dimensionless parameter in Eq. (6.22) (Chapter 6).
y	Bubble height, m (Chapter 5).
Уь	buode neight, in (Chapter 3).

y_s	Distance to bubble stagnation point from heated wall, m
	(Chapter 5).
\mathbf{Z}	Ohnesorge number, dimensionless, $Z = \mu/(\rho L \sigma)^{1/2}$ (Chapter 5).
Z	Heated length from the channel entrance, m (Chapter 5).
z*	Axial coordinate, dimensionless (Chapter 2).
z_i	Valence of type-i ions (Chapter 4).

Greek Symbols

	Convection heat transfer coefficient, W/m2 K (Chapter 2); coef-
α	
	ficient in the VSS molecular model, dimensionless (Chapter 2);
	aspect ratio, dimensionless (Chapter 6); void fraction, dimen-
	sionless (Chapter 6).
$\alpha_1, \alpha_2, \alpha_3$	Coefficients for the pressure distribution along a plane micro-
	channel, dimensionless (Chapter 2).
$\alpha_{ m c}$	Channel aspect ratio, dimensionless, $\alpha_c = a/b$ (Chapter 3).
$\alpha_{\rm i}$	Eigenvalues for the velocity distribution in a rectangular micro-
	channel, dimensionless (Chapter 2).
$\alpha_{\rm r}$	Radial void fraction, dimensionless, $a_r = 0.8372 + [1 -$
	$(r/r_{\rm w})^{7.316}$] (Chapter 6).
β	Coefficient in the VSS molecular model, dimensionless (Chapter 2);
	fin spacing ratio, dimensionless, $\beta = s/a$ (Chapter 3); angle with
	horizontal (Chapter 5); homogeneous void fraction, dimensionless
	(Chapter 6); velocity ratio, dimensionless (Chapter 6); multiplier to
	transition line, dimensionless, $\beta(F, X) = \text{constant}$, used by Sardesai
	et al. (1981) (Chapter 6).
$\beta_1, \beta_2, \beta_3$	Coefficients for the pressure distribution along a circular micro-
P1, P2, P3	tube, dimensionless (Chapter 2).
$\beta_{\rm A},\beta_{\rm B}$	Empirically derived transition points for the Kariyasaki et al.
PA, PB	void fraction correlation (Chapter 6).
Γ	Euler or gamma function (Chapter 2).
_	
γ	Area ratio, dimensionless (Chapter 6); dimensionless length ratio,
	$\gamma = L/H$ (Chapter 7); Specific heat ratio, dimensionless, $\gamma = c_p/c_v$
A D	(Chapter 2).
ΔP	Pressure drop, Pa (Chapter 6).
$\Delta P_2/\Delta P_1$	Ratio of differential pressure between two system conditions
	(Chapter 6).
Δp	Pressure drop, pressure difference, Pa (Chapters $1-3$, 5, and 7).
ΔT	Temperature difference, K (Chapter 6).
ΔT_{Sat}	Wall superheat, K, $\Delta T_{\text{Sub}} = T_{\text{Sat}} - T_{\text{B}}$ (Chapter 5).
$\Delta T_{ m Sub}$	Liquid subcooling, K, $\Delta T_{\text{Sat}} = T_{\text{W}} - T_{\text{Sat}}$ (Chapter 5).
Δt	Elapsed time, s (Chapter 4).
Δx	Quality change, dimensionless (Chapter 6).