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Preface

It is often said that books are a boon to mankind. They document every progress and pass
on the knowledge from one generation to the other. They play a crucial role in our lives.
Thus I was both excited and nervous while editing this book. I was pleased by the thought
of being able to make a mark but I was also nervous to do it right because the future of
students depends upon it. Hence, I took a few months to research further into the discipline,
revise my knowledge and also explore some more aspects. Post this process, | begun with
the editing of this book.

This book examines novel viewpoints about procedures and tools used in Hydrodynamics.
The phenomena associated with the flow of fluids are usually complex, and tough to quantify.
Novel approaches - considering points of view still not investigated - may present useful
devices in the study of hydrodynamics and the associated transport phenomenon. The
specifications of the flows and the characteristics of the fluids must be studied on a small
scale. Subsequently, novel concepts and devices are devised to better explain the fluids and
their characteristics. This book provides conclusions about advanced issues of calculated and
observed flows. Major topics in this book are radiation, electro-magneto-hydrodynamics and
magneto-rheology; special points on simulations and experimental inputs are also discussed.

I thank my publisher with all my heart for considering me worthy of this unparalleled
opportunity and for showing unwavering faith in my skills. I would also like to thank
the editorial team who worked closely with me at every step and contributed immensely
towards the successful completion of this book. Last but not the least, I wish to thank my
friends and colleagues for their support.

Editor
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An IMEX Method for the Euler Equations That
Posses Strong Non-Linear Heat Conduction and
Stiff Source Terms (Radiation Hydrodynamics)

Samet Y. Kadioglu! and Dana A. Knoll?

UIdaho National Laboratory, Fuels Modeling and Simulation Department, Idaho Falls
21.0s Alamos National Laboratory, Theoretical Division, Los Alamos
LSA

1. Introduction

Here, we present a truly second order time accurate self-consistent IMEX (IMplicit/EXplicit)
method for solving the Euler equations that posses strong nonlinear heat conduction and
very stiff source terms (Radiation hydrodynamics). This study essentially summarizes
our previous and current research related to this subject (Kadioglu & Knoll, 2010;
2011; Kadioglu, Knoll & Lowrie, 2010; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010;
Kadioglu etal., 2009; Kadioglu, Knoll, Sussman & Martineau, 2010). Implicit/Explicit
(IMEX) time integration techniques are commonly used in science and engineering
applications (Ascheretal.,, 1997; 1995; Batesetal.,, 2001; Kadioglu & Knoll, 2010; 2011;
Kadioglu, Knoll, Lowrie & Rauenzahn, 2010; Kadiogluetal,, 2009; Khan & Liu, 1994;
Kim & Moin, 1985; Lowrie et al., 1999; Ruuth, 1995). These methods are particularly attractive
when dealing with physical systems that consist of multiple physics (multi-physics problems
such as coupling of neutron dynamics to thermal-hydrolic or to thermal-mechanics
in reactors) or fluid dynamics problems that exhibit multiple time scales such as
advection-diffusion, reaction-diffusion, or advection-diffusion-reaction problems. In
general, governing equations for these kinds of systems consist of stiff and non-stiff terms.
This poses numerical challenges in regards to time integrations, since most of the temporal
numerical methods are designed specific for either stiff or non-stiff problems. Numerical
methods that can handle both physical behaviors are often referred to as IMEX methods.
A typical IMEX method isolates the stiff and non-stiff parts of the governing system and
employs an explicit discretization strategy that solves the non-stiff part and an implicit
technique that solves the stiff part of the problem. This standard IMEX approach can be
summarized by considering a simple prototype model. Let us consider the following scalar
model

up = f(u)+g(u), (1)
where f(u)and g(u) represent non-stiff and stiff terms respectively. Then the IMEX strategy
consists of the following algorithm blocks:

Explicit block solves:
u* —uy"

a =S, @
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Implicit block solves:
i

L =g, ®

Here, for illustrative purposes we used only first order time differencing. In literature,
although the both algorithm blocks are formally written as second order time discretizations,
the classic IMEX methods (Ascher etal., 1997; 1995; Bates et al., 2001; Kim & Moin, 1985;
Lowrie et al., 1999; Ruuth, 1995) split the operators in such a way that the implicit and explicit
blocks are executed independent of each other resulting in non-converged non-linearities
therefore time inaccuracies (order reduction to first order is often reported for certain
applications). Below, we illustrate the interaction of an explicit and an implicit algorithm
block based on second order time discretizations of Equation(1) in classical sense,

Explicit block:

ul —_— +Atf(ll")
u* = (ul +u)/2 4+ At/2f(u") )
Implicit block:

W = w4 At/2[g(u") + g(u™ ). (5)
Notice that the explicit block is based on a second order TVD Runge-Kutta method and the
implicit block uses the Crank-Nicolson method (Gottlieb & Shu, 1998; LeVeque, 1998; Thomas,
1999). The major drawback of this strategy as mentioned above is that it does not preserve the
formal second order time accuracy of the whole algorithm due to the absence of sufficient
interactions between the two algorithm blocks (refer to highlighted terms in Equation (4))
(Bates et al., 2001; Kadioglu, Knoll & Lowrie, 2010).
In an alternative IMEX approach that we have studied extensively in (Kadioglu & Knoll,
2010; 2011; Kadioglu, Knoll & Lowrie, 2010; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010;
Kadioglu et al., 2009), the explicit block is always solved inside the implicit block as part of the
nonlinear function evaluation making use of the well-known Jacobian-Free Newton Krylov
(JENK) method (Brown & Saad, 1990; Knoll & Keyes, 2004). We refer this IMEX approach as
a self-consistent IMEX method. In this strategy, there is a continuous interaction between the
implicit and explicit blocks meaning that the improved solutions (in terms of time accuracy)
at each nonlinear iteration are immediately felt by the explicit block and the improved explicit
solutions are readily available to form the next set of nonlinear residuals. This continuous
interaction between the two algorithm blocks results in an implicitly balanced algorithm in
that all nonlinearities due to coupling of different time terms are consistently converged. In
other words, we obtain an IMEX method that eliminates potential order reductions in time
accuracy (the formal second order time accuracy of the whole algorithm is preserved). Below,
we illustrate the interaction of the explicit and implicit blocks of the self-consistent IMEX
method for the scalar model in Equation (1). The interaction occurs through the highlighted
terms in Equation (6).
Explicit block:

ul = u" + Atf(u")
ut = (4 u") /24 At/2f (") (6)

Implicit block:
”"+1 — +At/2[g(lln) +g(un-' 1)]_ (7)



An IMEX Method for the Euler Equations That Posses Strong Non-Linear Heat Conduction and Stiff Source Terms
(Radiation Hydrodynamics) 5

Remark: We remark that another way of achieving a self-consistent IMEX integration that
preserves the formal numerical accuracy of the whole system is to improve the lack of
influence of the explicitand implicit blocks on one another by introducing an external iteration
procedure wrapped around the both blocks. More details regarding this methodology can be
found in (Kadioglu et al., 2005).

2. Applications

We have applied the above described self-consistent IMEX method to both
multi-physics and multiple time scale fluid dynamics problems (Kadioglu & Knoll,
2010; 2011; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010; Kadiogluetal.,,  2009;
Kadioglu, Knoll, Sussman & Martineau, 2010). The multi-physics application comes
from a multi-physics analysis of fast burst reactor study (Kadioglu et al., 2009). The model
couples a neutron dynamics that simulates the transient behavior of neutron populations
to a mechanics model that predicts material expansions and contractions. It is important to
introduce a second order accurate numerical procedure for this kind of nonlinearly coupled
system, because the criticality and safety study can depend on how well we predict the
feedback between the neutronics and the mechanics of the fuel assembly inside the reactor.
In our second order self-consistent IMEX framework, the mechanics part is solved explicitly
inside the implicit neutron diffusion block as part of the nonlinear function evaluation. We
have reported fully second order time convergent calculations for this model (Kadioglu et al.,
2009).

As part of the multi-scale fluid dynamics application, we have solved multi-phase flow
problems which are modeled by incompressible two-phase Navier-Stokes equations that
govern the flow dynamics plus a level set equation that solves the inter-facial dynamics
between the fluids (Kadioglu, Knoll, Sussman & Martineau, 2010). In these kinds of models,
there is a strong non-linear coupling between the interface and fluid dynamics, e.g, the
viscosity coefficient and surface tension forces are highly non-linear functions of interface
variables, on the other hand, the fluid interfaces are advected by the flow velocity. Therefore,
itis important to introduce an accurate integration technique that converges all non-linearities
due to the strong coupling. Our self-consistent IMEX method operates on this model as
follows; the interface equation together with the hyperbolic parts of the fluid equations are
treated explicitly and solved inside an implicit loop that solves the viscous plus stiff surface
tension forces. More details about the splitting of the operators of the Navier-Stokes equations
in a self-consistent IMEX manner can be found in (Kadioglu & Knoll, 2011).

Another multi-scale fluid dynamics application comes from radiation hydrodynamics that
we will be focusing on in the remainder of this chapter. Radiation hydrodynamics models
are commonly used in astrophysics, inertial confinement fusion, and other high-temperature
flow systems (Batesetal., 2001; Castor, 2006; Dai & Woodward, 1998; Drake, 2007;
Ensman, 1994; Kadioglu & Knoll, 2010; Lowrie & Edwards, 2008; Lowrie & Rauenzahn, 2007;
Mihalas & Mihalas, 1984; Pomraning, 1973). A commonly used model considers the
compressible Euler equations that contains a non-linear heat conduction term in the energy
part. This model is relatively simple and often referred to as a Low Energy-Density Radiation
Hydrodynamics (LERH) in a diffusion approximation limit (Kadioglu & Knoll, 2010). A more
complicated model is referred to as a High Energy-Density Radiation Hydrodynamics (HERH)
in a diffusion approximation limit that considers a combination of a hydrodynamical model
resembling the compressible Euler equations and a radiation energy model that contains a
separate radiation energy equation with nonlinear diffusion plus coupling source terms to
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materials (Kadioglu, Knoll, Lowrie & Rauenzahn, 2010). Radiation Hydrodynamics problems
are difficult to tackle numerically since they exhibit multiple time scales. For instance,
radiation and hydrodynamics process can occur on time scales that can differ from each
other by many orders of magnitudes. Hybrid methods (Implicit/Explicit (IMEX) methods)
are highly desirable for these kinds of models, because if one uses all explicit discretizations,
then due to very stiff diffusion process the explicit time steps become often impractically small
to satisfy stability conditions (LeVeque, 1998; Thomas, 1999). Previous IMEX attempts to solve
these problems were not quite successful, since they often reported order reductions in time
accuracy (Bates et al., 2001; Lowrie et al., 1999). The main reason for time inaccuracies was
how the explicit and implicit operators were split in which explicit solutions were lagging
behind the implicit ones. In our self-consistent IMEX method, the hydrodynamics part
is solved explicitly making use of the well-understood explicit schemes within an implicit
diffusion block that corresponds to radiation transport. Explicit solutions are obtained as
part of the non-linear functions evaluations withing the JENK framework. This strategy has
enabled us to produce fully second order time accurate results for both LERH and more
complicated HERH models (Kadioglu & Knoll, 2010; Kadioglu, Knoll, Lowrie & Rauenzahn,
2010).

In the following sections, we will go over more details about the LERH and HERH models and
the implementation/implications of the self-consistent IMEX technology when it is applied
to these models. We will also present a mathematical analysis that reveals the analytical
convergence behavior of our method and compares it to a classic IMEX approach.

2.1 A Low Energy Density Radiation Hydrodynamics Model (LERH)
This model uses the following system of partial differential equations formulated in
spherically symmetric coordinates.

o 10
Pt 5 (Pou) =0, ®)
J 19 )
(pu) + = = (Pou?) + 3 =0, ©
JE 1 oT

) 10
o T Ew vETPl= a5 ),
where p,u, p, E, and T are the mass density, flow velocity, fluid pressure, total energy density
of the fluid, and the fluid temperature respectively. « is the coefficient of thermal conduction
(or diffusion coefficient) and in general is a nonlinear function of p and T. In this study, we
will use an ideal gas equation of state, i.e, p = RpT = (y — 1)pe, where R is the specific gas
constant per unit mass, 7 is the ratio of specific heats, and € is the internal energy of the fluid
per unit mass. The coefficient of thermal conduction will be assumed to be written as a power
law in density and temperature, i.e, Kk = kop“ T?, where xy,a and b are constants (Marshak,
1958). This simplified radiation hydrodynamics model allows one to study the dynamics of
nonlinearly coupled two distinct physics; compressible fluid flow and nonlinear diffusion.

(10)

2.2 A High Energy Density Radiation Hydrodynamics Model (HERH)

In general, the radiation hydrodynamics concerns the propagation of thermal radiation
through a fluid and the effect of this radiation on the hydrodynamics describing the fluid
motion. The role of the thermal radiation increases as the temperature is raised. At low
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temperatures the radiation effects are negligible, therefore, a low energy density model
(LERH) that limits the radiation effects to a non-linear heat conduction is sufficient. However,
at high temperatures, a more complicated high energy density radiation hydrodynamics
(HERH) model that accounts for more significant radiation effects has to be considered.
Accordingly, the governing equations of the HERH model consist of the following system

) 1
af 2o 5 (o) = 0
? 19,5, o @ B
E(P“H'r—zg(” pu )+§(P+Pv)—0/ (12)
dE 19 5 B 1 9E,
=% r_ZE[r w(E+p)] = —cop(aT* = E,) — 343, (13)
JE 10 10 JoE, 1 oE
_aTV + _a_‘[r “(Eu -+ Pv)] = 2 a (r Dr—l) +CUH(aT4 Ev) ¥ = lla—rv (14)

where the flow variables and parameters that also occur in the LERH model are described
above. Here, more variable definitions come from the radiation physics, i.e, E, is the
radiation energy density, py, = —F»-;L is the radiation pressure, ¢ is the speed of light, a is the
Stephan-Boltzmann constant, ¢, is the macroscopic absorption cross-section, and D, is the
radiation diffusion coefficient. From the simple diffusion theory, D, can be written as

1
Dy(T) = —. 15
(T) = 35 (15)
We note that we solve a non-dimensional version of Equations (11)-(14) in order to
normalize large digit numbers (¢, 04,4 etc.) and therefore improve the performance of
the non-linear solver. The details of the non-dimensionalization procedure are given in
(Kadioglu, Knoll, Lowrie & Rauenzahn, 2010). The non-dimensional system is the following,

dp 10
5 + = 235 (F*pu) = (16)
2 o)+ 5 2 (Pou) + a(+P)— 17)
37 Pu (4 3P+ Ppy) = 0,
E 19 , B 1. OE,
5t r—zg[r u(E +p)] = —Poy(T* - E,) — gpu = (18)
9E, 19 19 ,, aE1 1 aEV
w + —Za—[i’ ll(E1/+pl’)] o _25(7‘ K—=— or 11(74 El) 3 or ' (19)

where P = —%— is a non-dimensional parameter that measures the radiation effects on the

sll

flow and is roughly proportional to the ratio of the radiation and fluid pressures.

3. Numerical procedure

Here, we present the numerical procedure for the LERH model. The extension to the
HERH model is straight forward. First, we split the operators of Equations (8)-(10) into two
pieces one being the pure hydrodynamics part (hyperbolic conservation laws) and the other
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p
I i i=12,...N
Newton Iteration
For k =1,....kmax
1% is available Explicit Hydrodynamics Block
Call Hydrod ics Block with Tk Based on S:cond order R—K method
Form Non—l..l?elgr Resu}ual ' Input T
+ n+l n+ 1
Res = pn ﬁz -E Return (pnfl(pu 5"‘: )

~(RHS(p “1“ >+RHS(p "y
Calculate 5“T

P,

1 12
EI'H' cvpn+l_l.k+l + p“+l(un+

v

P (n+1)
ln+1_ (Pu)
E /i i=12..N

sy

\

Fig. 1. Flowchart of the second order self-consistent IMEX algorithm

accounting for the effects of radiation transport (diffusion equation). For instance, the pure
hydrodynamics equations can be written as

oU  0d(AF)
et =0 s
where U = (p,pu, E)7, F(U) = (pu,pu?,u(E + p))T, and G(U) = (0,p,0)7. Then the
diffusion equation becomes
oE 0 oT
3 = b @)
where V = %ﬂr3 is the generalized volume coordinate in one-dimensional spherical geometry,
and A = 4mr? is the associated cross-sectional area. Notice that the total energy density,
E, obtained by Equation (20) just represents the hydrodynamics component and it must be
augmented by Equation (21).
Our algorithm consists of an explicit and an implicit block. The explicit block solves Equation
(20) and the implicit block solves Equation (21). We will briefly describe these algorithm
blocks in the following subsections. However, we note again that the explicit block is
embedded within the implicit block as part of a nonlinear function evaluation as it is depicted
in Fig. 1. This is done to obtain a nonlinearly converged algorithm that leads to second order
calculations. We also note that similar discretizations, but without converging nonlinearities,
can lead to order reduction in time convergence (Bates et al., 2001). Before we go into details
of the individual algorithm blocks, we would like to present a flow diagram that illustrates the
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execution of the whole algorithm in the self-consistent IMEX sense (refer to Fig. 1). According
to this diagram, at beginning of each Newton iteration, we have the temperature values based
on the current Newton iterate. This temperature is passed to the explicit block that returns the
updated density, momentum, and a prediction to total energy. Then we form the non-linear
residuals (e.g, forming the IMEX function in Section 3.3) for the diffusion equation out of
the updated and predicted values. With the IMEX function in hand, we can execute the JENK
method. After the Newton method convergences, we get second order converged temperature
and total energy density field.

3.1 Explicit block

Our explicit time discretization is based on a second order TVD Runge-Kutta method
(Gottlieb & Shu, 1998; Gottlieb et al., 2001; Shu & Osher, 1988; 1989). The main reason why we
choose this methodology is that it preserves the strong stability properties of the explicit Euler
method. This is important because it is well known that solutions to the conservation laws
usually involve discontinuities (e.g, shock or contact discontinuities) and (Gottlieb & Shu,
1998; Gottlieb et al., 2001) suggest that a time integration method which has the strong
stability preserving property leads to non-oscillatory calculations (especially at shock or
contact discontinuities).

A second order two-step TVD Runge-Kutta method for (20) can be cast as

Step-1:

pr =p" - t——(r pu)",

) )
1 9P 1n
(pu)" = (pu)" Af[—z)—(’ pu’) + N
E!'= At{——[r u(E+p)}",
(22)
Step-2 :
_ "tpl At1 9
prwl = 4 . [ 7r_za(r Pll)1,
a1 _ ()" +(ow)' A 1D 5 o5 D qLonig
(pll) - 2 2 {TZ ar(r pu ) + ar(p RT )}’
., E"+E! 10 g 1
E* = 5 ——{ﬁa—[r ul (cop' TP 4 Epl(zﬂ)z +p'RT™ )]},
(23)
We used the following equation of state relations in (22)- (23);
p = pRTE = copT + %puz, (24)

where ¢, = W_IEI is the fluid specific heat with R being the universal gas constant. This

explicit algorithm block interacts with the implicit block through the highlighted 7! terms
in Equation (23). We can observe that the implicit equation (21) is practically solved for T
by using the energy relation. Therefore, the explicit block is continuously impacted by the
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+1
ln

Cell Center Cell Edge
r=0 J
=R
I . T ri|+l/2 =%
] n
! I

A Computational Cell
u? : Represents a Cell Centered Quantity at time level n
uiil nt Represents a Cell Edge Quantity at time level n
Fig. 2. Computational Conventions.

implicit T"*! solutions at each non-linear Newton iteration. This provides the tight nonlinear
coupling between the two algorithm blocks. Notice that the k' nonlinear Newton iteration of
the implicit block corresponds to "1 <~ T* and k — (1 + 1) upon the convergence of the
Newton method (refer to Fig. 1). Also, the * values in Equation (23) are predicted intermediate
values and later they are corrected by the implicit block which is given in the next subsection.
One observation about this algorithm block is that some calculations are redundant related
to Equation (22). In other words, Equation (22) can be computed only once at the beginning
of each Newton iteration, because the non-linear iterations do not impact (22). This can lead
overall less number of function evaluations.

Now we shall describe how we evaluate the numerical fluxes needed by Equations (22) and
(23). For simplicity, we consider (20) to describe our fluxing procedure. Basically, it is based
on the Local Lax Friedrichs (LLF) method (we refer to (LeVeque, 1998; Thomas, 1999) for the
details of the LLF method and for more information in regards to the explicit discretizations
of conservation laws). For instance, if we consider the following simple discretization for
Equation (20),

At At
ul=Ur'- A—‘/—i(Ai+1/2F;'_',1/2 = Aic1/2F 1 72) = 57 (Glajp = Gliaja)s (25)
where AV, = V(f[+1/2) == V(r,;l/;)_), Aii]/Z = A(I’,‘ﬂ/z), and indices i and i +1/2 represent
cell center and cell edge values respectively (refer to Fig. 2), then the Local Lax Friedrichs method
defines F; 1,2 and Gj, 1/ as

R L R L

o FURa ) FE(Uiy) Uk —Uiap
F B 26
i+1/2 = 2 —Rit1/2 3 , (26)

G(UR, )+ G(UL, )
G‘+1/2: i+1/2 2 i+1/2 , (27)

where & = max{|AL|, AR, (A%, |AR], [AL], |AR(} in which Ay = u —¢, A2 = u, A3 = u+¢, and
c is the sound speed. The sound speed is defined by

_ [op
f-\/$' (28)




