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Editor’s Preface

Approach your problems from the right
end and begin with the answers. Then,
one day, perhaps you will find the final
question.

It isn’t that they can’t see the solution. Tt
is that they can’t see the problem.

G. K. Chesterton, The Scandal of I-‘ather
Brown ‘The Point of a Pin’.

‘The Hermit Clad in Crane Feathers' in
R. Van Gulik’s The Chinese Maze
Mourders.

Growing specialization and diversification have brought a host of mono-
graphs and textbooks on increasingly specialized topics. However, the
‘tree’ of knowledge of mathematics and related fields does not grow only by
putting forth new branches. It also happens, quite often in fact, that
branches which were thought to be completely d:sparate are suddenly
seen to be related.

Further, the kind and level of sophistication of mathematics applied in
various sciences has changed drastically in recent years: measure theory
is used (non-trivially) in regional and theoretical economics; algebraic
geometry interacts with physics; the Minkowsky lemma, coding theory
and the structure of water meet one another in packing and covering
theory; quantum fields, crystal defects and mathematical programming
profit from homotopy theory; Lie algebras are relevant to filtering; and
prediction and electrical enginecring can use Stein spaces.

This series of books, Mathematics and Its Applications, is devoted to such
(new) interrelations as exempla gratia:

—a central concept which plays an important role in several different
mathematical and/or scientific specialized areas;

—new applications of the results and ideas from one area of scientific
endeavor into another;

- influences whic:: the results, problems and concepts of one field of enquiry
have and have 1ad on the development of another.

With books on topics such as these, of moderate length and price, which

i



viii Editor’s Preface

are stimulating rather than definitive, intriguing rather than encyclopaedic,
we hope to contribute something towards better communication among
the practitioners in diversified fields.

The present book furnishes good example of a central concept (tech-
nique) with multitudes of different uses. Fixed points and fixed point
theorems have always been a major theoretical tool in fields as widely apart
as differential equations, topology, economics, game theory, dynamics,
optimal control, and functional analysis. Moreover, more or less recently,
the usefulness of the concept for applications increased enormously by the
development of accurate and efficient techniques for computing fixed
points, making fixed point methods a major weapon in the arsenal of the
applied mathematician.

The unreasonable eflectiveness of mathe-
matics in science . . .
Eugene Wigner

Well. if you knows of a better ‘ole, go to
it,

Bruce Bairnsfather

What is now proved was once only
imagined.
William Blake

Krimpen a/d 1Jssel
March, 1979

As long as algebra and geometry pro-
ceeded along separate paths, their ad-
vance was slow and their applications
limited.

But when these sciences joined com-
pany, they drew from each other fresh
vitality and thenceforward marched on

* at arapid pace towards perfection.

Joseph Louis Lagrange

Michiel Hazewinkel
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Foreword

This book is intended as an introduction to fixed point theory and its
applications. The topics treated range from fairly standard results (such as
the Principle of Contraction Mapping, Brouwer’s and Schauder’s fixed
point theorems) to the frontier of what is known, but we have not tried to
achieve maximal generality in all possible directions. We hope that the
references quoted may be useful for this purpose.

The point of view adopted in this book is that of functional analysis; for
the readers more interested in the algebraic topological point of view we
have added some references at the end of the book. A knowledge of
functional analysis is not a prerequisite, although a knowledge of an
introductory course in functional analysis would be profitable. However,
the book contains two introductory chapters, one on general topology ahd
another on Banach and Hilbert spaces. As a special feature of these ¢hapters
we note the study of measures of noncompactness; first in the case of metric

- spaces, and second in the case of Banach spaces.

Chapter 3 contains a detailed account of the Contraction Principle,
perhaps. the best known fixed point theorem. Many generalizations of the
Contraction Pringiple are also included. We note here the connection
between ideas from projective geometry and contractive mappings. After
presenting some ways to compute the fixed points for contractive
mappings, we discuss several applications in various areas.

Chapter 4 presents Brouwer’s fixed point theorem, perhaps the most
important fixed point theorem. After some historical notes concerning
opinions about Brouwer’s’ proof — which have been influential for the future
of the fixed point theory (Alexander and Birkhoff and Kellogg)— we
present many proofs of this theorem of Brouwer, of interest to different
categories of readers. Thus we present an elementary one, which requires
only elementary properties of polynomials and continuous functions;
another uses differential forms; still another uses differential topology; and
one relies on combinatorial topology. These different proofs may be used in
different ways to compute the fixed points for mappings. In this connection,
some algorithms for the computation of fixed points are given. The chapter

\



X1v Foreword

ends with some applications, among which we mention here those
concerning economic equilibrium prices.

Chapter 5 is a natural continuation of Chapter 4 and presents the
generalizations of Brouwer’s theorem obtained by Schauder as well as the
new results connected with Schauder’s generalization of Brouwer's theo-
rem. Various important and interesting contributions due to Krasnoselskii,
Rothe, Altman, Ky Fan, F. Browder and also results due to Darbo and
Sadovskii are presented. The contributions of Darbo and Sadovskii
concern a new direction of extending the classical fixed point theorems,
namely, using the so-called measures of noncompactness. We also present
in this chapter some applications, among them the proof by Lomonosov of
the existence of nontrivial hypermvanant subspaces for bounded linear
operators on Banach spaces commuting with nonzero bounded linear
compact operators.

In Chapter 6 we present some results about mappings which do not
increase distance — the so called nonexpansive mappings. First we present
some results on the extension of nonexpansive mappings, with a simple
example to show that, without certain restrictions on the mappings or on
the space, fixed points do not exist for nonexpansive mappings. Further we
present some results about the existence of fixed points for nonexpansive
mappings or related classes of mappings on certain classes of Banach
spaces, as well as results about the convergence of the iterates. An example
and a method for computing fixed points for such mappings close this
chapter.

Chapter 7 discusses results about fixed points for sequences of mappings.
First we give some results for the case of contraction mappings, and second,
for condensing mappings.

In Chapter 8 we present the elements of a theory of duality mappings and
their connections with monotonic and nonexpansive operators as well as
some surjectivity theorems which have many and useful applications in the
theory of partial differential equations.

Chapter 9 contains results centering around the Markov—Kakutani
results, including a beautiful result of Ryll-Nardzewski, as well as some
results about the connection between invariant means on semigroups and
fixed point theorems.

As a natural extension of the theory of fixed points for single-valued
.mappings, in Chapter 10, the cas¢ of set-valued mappings is considered.
First we give some results about the Pompeiu—Hausdorff metric and results
about set-valued contraction mappings. Some results concerning the
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extension of Brouwer and Schauder as well as Tichonov results for set-
valued mappings are included.

Probabilistic metric spaces were introduced by Karl Menger in 1942, and
since then the interest about these spaces has been growing constantly. We
present in Chapter 11 some results about fixed points for contractive
mappings on probabilistic metric spaces (abbreviated as PM-spaces) as well
as some results concerning measures of noncompactness on these spaces
and fixed points for certain classes of mappings.

Finally Chapter 12 contains results concerning topological degree. First
the case of finite dimensional spaces is treated, in which we have the so-
called Brouwer’s degree; next this degree is extended to certain per-
turbations of the identity operator on Banach spaces. We include also the
famous example of Leray which shows that it is not possible to define the
degree for arbitrary perturbations.

Next, we present briefly the results obtained by extending the degree
concept to certain perturbation of the identity by k-set contraction
mappings. -Using some approximation theorems (which are also of
independent interest) we prove uniqueness of the topological degree. Next
we give some algorithms for the computation of Brouwer’s topological
degree based on Stenger’s formula. Some applications of the degree are
noted at the end of this chapter.

We have tried to indicate the original location of the various results we
have learned, and the references (which contain in turn references to many
earlier results) may be used to obtain further information; when a result is
not ascribed to anyone we do not make any claim to originality.

We wish to acknowledge with thanks conversations and correspondence
on Functional Analysis, Operator Theory and Fixed Point Theory from
which we have benefitted. The author wishes to acknowledge especially his
debt to Professor Michiel Hazewinkel for his interest in the work, as well as
for the suggestions concerning the material contained in this book.

My appreciation goes also to the editors of the D. Reidel Publishing
Company for their attention to this volume.

VASILE 1. ISTRATESCU
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Chapter 1

Topological Spaces and Topological Linear Spaces

-

1.1. METRIC SPACES

The notion of convergence is of fundamental importance in analysis as well
as in many chapters of mathematics. Thus we have the convergence of
sequences of real numbers, the convergence of sequences of complex
numbers, the convergence of sequences of functions, etc. It is worth
remarking that in the case of functions we have many types of convergence,
for example: pointwise convergence; uniform convergence; the con-
vergence in measure, etc.

Also, when we define the convergence of a sequence of numbers or
functions we use points which are ‘near’ to our points. This vague notion of
‘nearness’ can be made precise using some functions which are called
generally ‘metrics’ or ‘distances’.

DEFINITION 1.1.1. Let S be a nonempty set and d : S x S—R.
The function d is called a metric on S (or distance) iff the following
properties hold:

1. d(x, y)=0 iff x=y,
2 d(x, y) =d(y, x) for all x, yeS,
3. dix, z) £d(x, y) + d(y, z) for all x, y, zeS.

The number d(x, y) is called the distance between x and y and the pair

(X, d)is called a metric space. For simplicity we write X and we say that X is
a metric space.

PROPOSITION 1.1.2. For any x, ye§, d(x, y) = 0.
Proof. Let x, y, z be arbitrary points in S. In this case we have

d(x, z) 2 d(x, y) + d(y, 2)
and thus for x = z we obtain
0 =d(x, y)+d(y, x) =2d(x, y)

and the assertion follows.



2 Chapter |

If S, is a subset of a metric space S then we can define a metric on S,
simply by the relation

dy(x, y)=d(x, y)

and d, is called the induced metric on §,.
We give now some examples of metric spaces.

Example 1.1.3. Let E (or R")= {x=(x,, x,,...,X,).X;€R, R the set of real
numbers} and let d be defined as follows: if y =(y,, ¥5,...y,) then

n

dx, y)= (Z [ = y.-I”)”p =d,(x, y).

1

where p is a fixed number in [1, o). The fact that 4 is a metric follows from
the well-known Minkowski inequality. Also another metric on S con-
sidered above can be defined as follows:

d(x, y)=sup {|x; — yi|} =d (x, y).

Example 1.1.4. Let S be the set of all sequences of real numbers x = (x,);
such that for some fixed pe[0, =)

Y Ixil? < co.
1
In this case, if y =(y,) is another point in S, we define
lip
d(x' y) = (Z'xi = yl,lp> = dp(x, y)

and from Minkowski’s inequality it follows that this is a metric on S.

Example 1.15. Let S=L{ ,,={/.{olfI’dt <20} and for any two func-
tions (classes of functions) f, g we define

I
dy(f g = (j |f—gl? d’>m
0

and from Minkowski’s inequality for integrals, it follows that this is a metric
on S.

>

Example 1.1.6. Let S = C, ,, be the set of all continuous complex-valued
functions on [0, 1]. We define, for any f,¢g in S

d(f, g)=sup {| (t) — g(1)] :te[0, 13}

and it is easy to see that this is a metric on S.
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Example 1.1.7. For the set S of all real numbers, which in what follows will
be denoted by R, we defline

d(x, y) =[x —y]|
for any two real numbers x, y. Then (R, d) is a metric space.

Example 1.1.8. Let S be the set Q of all rational numbers in R and the
metric induced by d. Then (Q, d,) is a metric space. The notion of
convergence in metric spaces is defined as follows:

DEFINITION 1.1.9. A sequence {x,} in a metric space (X, d) converges to
an element x of X if, for any & > 0, there exists N, such that foralln > N_,

d(x,, x)s £.

An important class of sequences in metric spaces are the so-called
Cauchy sequences. These sequences are defined as follows:

DEFINITION 1.1.10. A sequence {x,} in a metric space (X, d) is called a
Cauchy sequence if, for any ¢ > 0, there exists N, such that for all n, m =2 N_,

d(x,,x,) Se

ns

It 1s easy to see that any sequence which converges is a Cauchy sequence.

An important class of metric spaces in which the converse is also true is
the class of so-called ‘complete metric spaces’ and formally this class is
introduced in the following

DEFINITION 1.1.11. A metric space (X, d) in which any Cauchy sequence
tx,} has the property that it converges to a point of X, is called complete.

Example 1.1.12. All the spaces in Examples 1.1.5-1.1.6 are complete
metric spaces; the metric space in Example 1.1.7 is not complete.
For any r >0 and xe X, X a metric space, we define

1. S,(x) = {y. d(x, y) =r} the disc with centre x and radius r,
2. S,(x) = {). d(x, y) < r} the open disc with centre x and radius r,
3. ¢S,(x)={y, d(x, y)=r} the boundary of the disc with centre x

and radius r or the circumference of centre x and radius r.

DEFINITION 1.1.13. Let (X,d) be a metric space and G a subset of X. The
point xeG is said to be interior to G if there exists an open disc S,(X) < G.
The set G is called open if all its points are interior points or is the empty set.
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DEFINITION 1.1.14. A set F in a metric space is called closed if the set
Cp={x,xeX,x¢F}

is an open set.
For any set in a metric space X, the diameter is the number

d(A) = sup {d(x, y), x,ye A}
and the distance from a point xeX to the set A4 is the number
d(x, A) = inf {d(x, y); ye A}.

We define now the fundamental notion of neighbourhood of a point in a
metric space.

DEFINITION 1.1.15. If X is a metric space and xe X is an arbitrary point
then a neighbourhood of x is any set which contains an open set
containing x.

The important notion of continuity is introduced as follows:

DEFINITION 1.1.16. If X and Y are two metric spaces and f: X — Y is any
function, then we say that f is continuous at xe X if, for any neighbourhood
V of f(x), there exists a neighbourhood U of x such that for all ze U, f(z)eV.
The function f is continuous on X if it is continuous at each point of X.

We have the following characterization of continuous functions at x:

THEOREM 1.1.17. If X and Y are two metric spaces and f : X — Y is any
Junction, then f is continuous at xe X if and only if (contracted to ‘iff” following
a suggestion of Halmos) for any sequence (x,) = X converging to x, the sequence

(f(x,) corverges to f(x).
Proof. Since the proof is the same as for functions defined on [0, 1] we
omit it.

DEFINITION 1.1.18. If X is metric space and S is any set in S then the
closure of § is the intersection of all closed sets containing S and is denoted
by 3.

Example 1.1.19. There exist metric spaces for which
S, () # 5.
For, il we take X as

X={x,0sxs1}u{e? 0<0<n/2},
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then clearly §,(0) = X and
$,00={x,0sx<1}.

This gives that
$.0={x,0sx<1}.

For the connection between complete metric spaces and incomplete
metric spaces (i.e. metric spaces which are not complete) we mention the
following result, which can be proved exactly as for the case X = Q the set of
all rational numbers:

First we give the following

DEFINITION 1.1.20. If (X, d) is a metric space then the subset X, is dense
in X if for any x in X there exists a sequence (x,), x,€ X, such that

limd(x,x)=0.
Then we have

THEOREM 1.1.21. If (X, d) is an incomplete metric space then there exists a
complete metric space (X, d") such that for some function f we have

1. f:XoX"

2, dix, y) =d (f(x), (S (),
3. f(X) is dense in X ~.

We recall that any function f with Property 2 is called an isometry.

1.2. COMPACTNESS IN METRiC SPACES.
MEASURES OF NONCOGMPACTNESS

As is well known, for any bounded set E of real numbers there exists, for any
sequence (x,) = E, a convergent subsequence (this is the so called Bolzano-
Weierstrass theorem), and any closed and bounded set can be characterized
as having the following equivalent properties:

1. E has the property that for every sequence (x,) < E there exists a
convergent subsequence to an element of E,

2. For any family (¥);_, of open sets such that E < | J;_,V; there exist
iyenes i, such that Ec (JT ¥, (this is the so called Lebesgue-Borel
Lemma).



