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Notations

Basis vectors for a qubit in the computational (Z) basis, written
in Dirac’s ket notation.

Basis vectors for a qubit in the X basis, written in Dirac’s ket
notation.

Names of nodes; abbreviations for Alice and Bob. Nodes are
referred to with a numeric address in some places.

Diagonal elements of a two-qubit density matrix written in the
Bell basis, corresponding to the probabilities of |®7T), |¥T),
|®~) and |¥ ™), respectively.

Corresponding element of the d.m. of a two-qubit state (typically
a Bell pair) shared between Alice and Bob.

The set of complex numbers.

Generic for the fidelity of the state of one or more qubits,
F = (| p|Y). F = 1.0is a pure state. FF = 2" is the fidelity
of a completely mixed state of n qubits.

Attenuation length in fiber.

Dirac’s ket notation for a state vector. Generic for the state vector
of a pure state of one or more qubits. It may be either a physical
qubit or a logical one encoded using quantum error correction,
depending on the context.

Dirac’s ket notation for a qubit encoded using quantum error
correction; a logical state, as opposed to a physical one.

Dirac’s ket notation for the NOT of a qubit.

Usually, the single-qubit Hadamard gate; occasionally, the
Hamiltonian representing the physical evolution of a state.
Probability of success of the base-level physical entanglement
operation.

Probability of success of the first round of purification.
Projective measurement operator for the value 0 on qubit 1.
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T energy relaxation time, or bit flip decay time, of the qubit in
a Bell pair held at node A (Alice).

T’ (phase relaxation time) of the qubit in a Bell pair held at node
A (Alice).

Link-level one-way latency, round-trip time.

End-to-end one-way latency, round-trip time.

The single-qubit Pauli operators. Also written as oy, etc, in
other texts and papers.

A Bell pair with one qubit held by node A and one qubit held by
node B.

Generic for the density matrix for one or more qubits.

Density matrix for a two-qubit state (typically a Bell state)
shared between nodes A and B.

Asymptotic upper limit on growth in total number of
computational operations, or execution time (circuit
depth/algorithm steps) as problem size grows.

Exact asymptotic growth in total number of computational
operations, or execution time (circuit depth/algorithm steps) as
problem size grows.

Asymptotic lower limit on growth in total number of
computational operations, or execution time (circuit
depth/algorithm steps) as problem size grows.
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Introduction

We are going to need a quantum Internet, and to build it, we need quantum
internetworking technology. This book is my contribution to both the technical and
social work of getting there. It is based on my experiences during 15 years of work
on classical computing systems and networks, followed by a decade of research on
quantum computing systems and networks.

Quantum information, including both quantum computing and quantum
communication, is poised to have a large and sustained impact on the fields of
theoretical and experimental quantum physics, theoretical computer science (or
informatics) and ultimately the information technology industry. One important
subfield is quantum networking, especially using quantum repeaters, which are the
focus of this tome. Quantum signals are weak and very fragile, and, in general,
cannot be copied or amplified. Engineering quantum communication sessions that
can reliably exchange data over long distances, in topologically complex networks
built on heterogeneous technologies and managed by many independent
organizations, requires an extraordinarily broad range of expertise, which few
individuals anywhere have in roto. Over the next 300 or so pages, we will attempt to
lay a common foundation on which each person can erect his or her contribution.

The primary audience of the book is two-fold:

— computer networking folks with no prior background in quantum information,
who are curious and considering working in the field;

— quantum information experts who have yet to work in the area of repeaters and
need an introduction, or those who have begun working in the area but need more
background in networks.

Ideally, the book will produce a “meeting of minds” between the two
communities. Networkers will find that quantum networking is less intimidating than
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it initially appears, and that there are breathtaking concepts underlying an emerging
class of uses for distributed quantum information. Physicists will discover that
networks are complex, artificial artifacts with emergent behaviors not immediately
anticipated from the behavior of individual building blocks, and are built on some
principles that are every bit as fundamental and beautiful as those they have been
studying in physics. By the end of the book, readers from either community should
be prepared to design a quantum repeater network, based on both classical network
architecture and the existing literature on quantum repeaters. Readers should know
enough to implement simulations of repeater networks that properly take into
account (1) a reasonable abstraction of the physics, (2) the distributed, autonomous
nature of decision-making and (3) the technical and operational heterogeneity of
networks of networks such as the Internet.

The book is intended to be a readable introduction rather than a comprehensive,
in-depth tome; each chapter is 10-20 pages, intended to be ingested in one sitting.
Most chapters will use only basic linear algebra and probability theory. The approach
emphasized throughout the book will be on the use of classical networking principles
to build a sustainable, extensible, robust quantum repeater network architecture.

The overall flow of the book is an overview, three chapters on background
(quantum information, networking concepts and teleportation), then three chapters
on applications (QKD, distributed digital computation and entangled states as
reference frames) to motivate the development of networking technology. In Part 3 of
the book, the focus first shifts to the bottom of the stack, beginning with the physical
entanglement experiments and link design. After working through purification, we
come to the three major classes of communication session architecture for chains of
quantum repeaters: the original entanglement swapping approach, the more recent
error correction based approaches, and the recent work on asynchronous approaches.
The book ends with a series of chapters on issues in multi-user, autonomous
networks: multiplexing, routing and internetworking architecture, featuring the
Quantum Recursive Network Architecture (QRNA).

The reader will find varying levels of mathematical and logical rigor in different
chapters. In particular, a thorough discussion of physical implementations would fill
a separate book, which we leave to the physicists. Likewise, at the highest level, the
details of the security protocols and proofs for applications such as verifiable secret
sharing are beyond the scope of this book; the applications are presented in just enough
depth that casual readers will be able to understand why they are valuable, and what
demands they make on the network itself.

Readers are assumed to be familiar with basic vector and matrix addition,
multiplication and calculation of the determinant; exponentiation of matrices;
complex numbers, including their exponentiation; and discrete probability. The
mathematics presented here does not go beyond this level. Thus, although the
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concepts presented here are largely unfamiliar, abstract and sometimes
counter-intuitive, the math itself is generally not particularly difficult. Chapter 2
includes explicit, worked examples of many of the mathematical principles. It is even
possible for well-prepared first- and second-year undergraduates to work through the
book.

For the advanced researcher, it is worth noting that this book lies halfway between
the research monograph and the textbook on the spectrum. In the course of writing
what I thought would be a relatively cut-and-dried presentation of some basics viewed
from the point of view of a network engineer, I discovered a number of things that
simply have not yet been done in the literature. Among them:

— distributed density matrix management (section 8.5);
— the “valley fold” timing for quasi-asynchronous repeaters (section 12.1);

— a moderately detailed analysis of network workloads imposed by applications of
repeaters (Chapter 6);

— extended state machine-based designs for protocols.

Each of these likely will be a journal paper, perhaps more or less concurrent with
the appearance of the book, but all but the last had their genesis in this writing project.
(We began the state machine approach in a conference paper [APA 11b], but the book
contains new material.) Each of these topics also deserves yet more attention than
I have so far been able to give. I look forward to handing them off to my capable
collaborators.
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