

by Scanning Electron Microscopy

Yasuo Harada

ATLAS OF THE EAR

by Scanning Electron Microscopy

Yasuo Harada

Hiroshima University Medical School Hiroshima, Japan

University Park Press Baltimore

Published in USA and Canada by University Park Press 300 North Charles Street Baltimore, Maryland 21201

Published in UK and Europe by MTP Press Limited Falcon House Lancaster, England

Originally published in Japanese by Nishimura Co., Ltd., 1-754-39 Asahimachi-dori, Niigata-shi 951, Japan.

Copyright © 1983 MTP Press Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission from the publishers.

ISBN 0-8391-1922-4

LCCN 83-080753

Printed in Great Britain

ATLAS OF THE EAR

by Scanning Electron Microscopy

Foreword

The physiology of the semicircular canals was my main research interest before I began to study their morphology. In 1966, by utilizing the isolated semicircular canal of the frog, I was able to show that cell activity in the horizontal semicircular canal has the opposite polarity to that in the vertical canals, which was the first physiological proof of Ewald's law. Several transmitting electron microscope (TEM) studies had already reported on the morphology of the semicircular canal cristae; however, my morphological work was motivated by a strong desire to see whether the morphological polarity accorded to the physiological polarity.

In 1968 I happened to see the paper written by Dr David Lim, one of my close friends. His findings concerning the vestibular morphology, when examined by scanning electron microscopy (SEM), fascinated me a great deal because of the three-dimensional quality of the micrographs. This stimulated me to become involved in vestibular morphology. In the beginning, however, I faced many problems with specimen preparation for SEM, and the first few years were spent simply solving technical problems, especially those of artifacts.

Many of the figures in this book have been photographed with a JEOL JSM U-3 scanning electron microscope over a decade. The sharpness of these pictures still, I think, bears comparison to the definition of those taken by the more sophisticated SEM scopes currently available.

My work on the morphology and physiology of the vestibular organ led me to research into the whole inner and middle ear system. This has been intensively investigated with a JEOL JSM T200 and a JEOL JSM F15 which were recently introduced to my department. Here, these micrographs from the inner and middle ear are compiled for publication together with brief captions. What is presented in the text is generally aimed at the level of the otolaryngologist, but would also be of interest to medical students. The structure of the inner ear is complicated, as is indicated by its alternative name of 'labyrinth', and it used to be a research field not easily accessible. In this atlas emphasis is placed on

the surface structure, thus enabling better understanding of the anatomy. Furthermore, this book covers almost every aspect of the inner and middle ear, such as morphology beneath the surface, the nervous system and even clinical pathology.

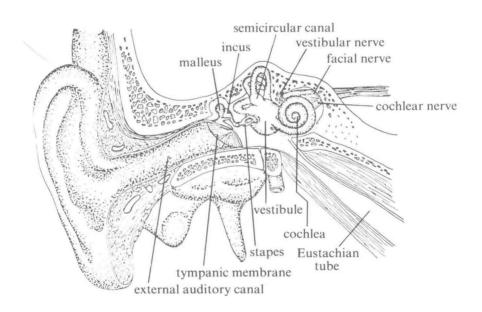
It is my great pleasure that this publication may contribute to the work of those concerned with the ultrastructure of the ear.

Yasuo Harada, MD

Acknowledgements

Many thanks to Prof M. Cherubino at Pavia University, Italy, who invited me to conduct research on the physiology of the inner ear. Physiological work under guidance of Prof C. Casela and Prof G. Rapuzzi at the Istituto di Fisiologia Generale dell'a Università di Pavia, was further developed in Japan and stimulated my interest in vestibular morphology.

Prof S. Kurozumi's support for this study is acknowledged.


Dr N. Tagashira, Mr M. Murao, Ms Y. Ohki and Ms M. Hayashi have been extremely helpful in preparing pictures and the manuscript. Thanks are also due to Dr I. Hunter-Duvar and Dr M. Suzuki who have contributed to this English compilation. This work was supported by Grant-in-Aid for Scientific Research C 157399, B 248309 and A 440162.

Contents

Foreword	vii
Acknowledgements	viii
The Middle Ear	1
The tympanic membrane	3
The auditory ossicles	10
The auditory ossicular chain	14
The auditory muscles	16
The mucous membrane of the middle ear	21
The round window membrane	23
The Eustachian tube	25
The Inner Ear and Vestibular Organs	31
The inner ear	32
The otolithic organs	36
The function of the otolithic organs	36
The shape and composition of otoconia	40
The otolithic membrane	48
The formation area of the otoconia	54
The absorption area of the otoconia	62
The sensory cells	69
The striola	78
The sensory area of the macula	80
The sensory cell population of the macula	82
The semicircular canals	86
The function of the semicircular canals	86
The polarity of the vestibular organs	89
The cupula	91
The sensory epithelium of the crista	97
The shape of the cristae ampullares	101
Animals without eminentia cruciata	103
The crista neglecta	111
The planum semilunatum	113
The transitional epithelium	115

Vestibular supporting cells	117
Vestibular dark cells	119
Vestibular wall cells	121
The calibre and number of the vestibular nerve fibres	125
The cochlear aqueduct	128
The endolymphatic sac	130
The Cochlea	141
The organ of Corti	142
The outer and the inner hairs	154
The tectorial membrane	154
Reissner's membrane	165
The stria vascularis	170
The mesothelial cell	174
The spiral ganglion	176
The innervation of the organ of Corti	178
The nerve endings	178
The vascular system of the inner ear	186
Morphological Changes of the Middle and Inner Ear	189
Morphological changes of the vestibular organ by	
aminoglycosides	190
Morphological changes of the middle ear mucosa in sensory	207
otitis media	207
Cholesteatoma	213
Morphological changes of the organ of Corti by	215
aminoglycosides	215
Acoustic damage to the organ of Corti	220
Pathological changes of human vestibular organs	225
Index	226

The Middle Ear

The tympanic membrane

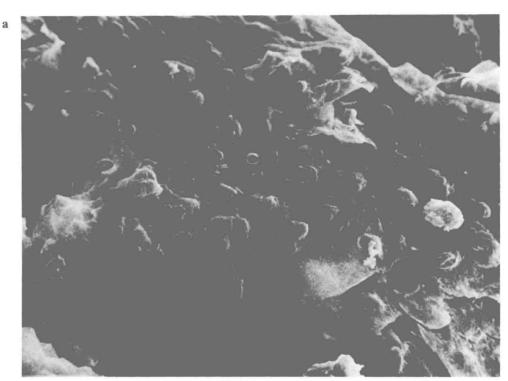
The tympanic membrane of a human adult is oval or elliptical in shape, with its major axis 9.0–10.2 mm in length and minor axis 8.5–9.0 mm. The tympanic membrane is divided into tense and flaccid portions and histologically consists of three layers, epidermis, lamina propria and mucosa. The flaccid portion lacks the lamina propria. The annular ligament surrounds the tense portion, but it is interrupted at the flaccid portion.

(1) Epidermis

This is especially thick in the flaccid portion and is divided into the stratum corneum, stratum spinosum and stratum basale.

(2) Lamina propria

There are two layers; the radiate fibrous layer on the outside and the circular fibrous layer inside. These layers include collagen fibrils and other fine fibrils. Studies by SEM showed the radiate fibrous layer starts from the lower $\frac{4}{5}$ of the malleus manubrium (Shimada *et al.*, 1971) and ends at the annulus. The circular fibrous layer arises from the short process of the malleus, partly from the manubrium and is dense in the peripheral area of the tympanic membrane. A similar structure is seen in the guinea pig (Lim, 1970, Kawabata, 1971, Harada, 1972, Nomura, 1978).


(3) Mucosa

This layer consists of a single layer of squamous cells in the flaccid portion which partially includes multiple stratified cylindrical cells (Hentzer, 1969). There are microvilli in the cell surfaces and also some cells with a centriole.

References

- 1. Harada, Y. (1972). Scanning electron microscopic observation of the lamina propria of the tympanic membrane in guinea pig. *Practica Otologia* (*Kyoto*), **65,** 995
- 2. Hentzer, E. (1969). Ultrastructure of the human tympanic membrane. *Acta Otolaryngol*. (*Stockholm*), **68**, 576
- 3. Kawabata, I. and Ishii, H. (1971). Fiber arrangement in the tympanic membrane. *Acta Otolaryngol*. (Stockholm), 72, 243
- 4. Lim, D. J. (1970). Human tympanic membrane. Electron microscopic observation. *Acta Otolaryngol*. (Stockholm), 70, 197
- 5. Shimada, T., et al. (1971). The fiber arrangement of the human tympanic membrane. A scanning electron microscopic observation. Ann Otol. Rhinol. Laryngol., 80, 210

Figure 1 Epidermis (human). (a) There are some concave portions possibly due to the nucleus of the cell (× 400), (b) the surface is generally smooth, but partially desquamated (× 1300)

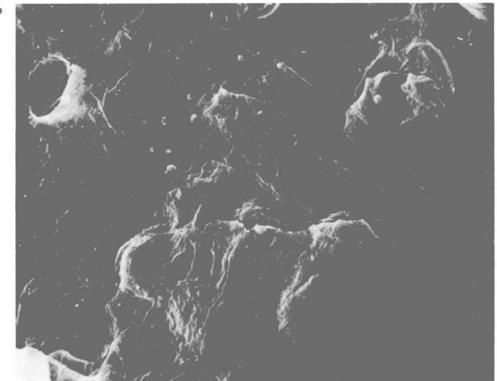


Figure 1

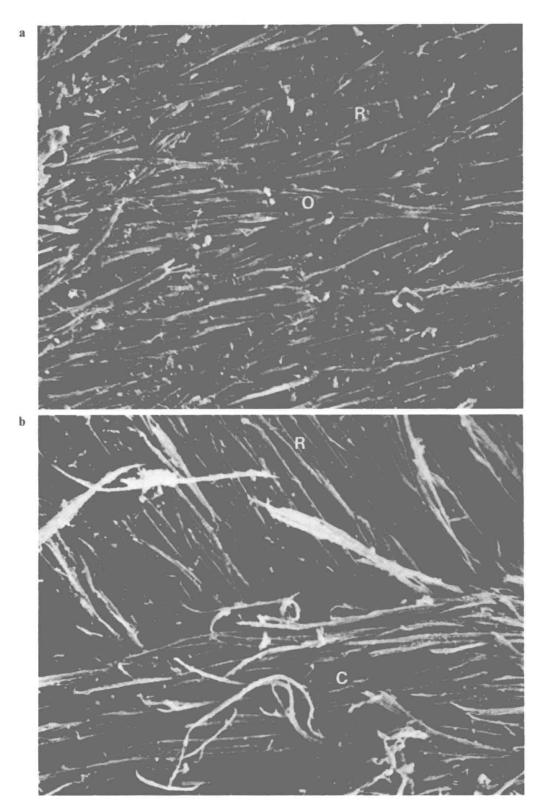


Figure 2 Lamina propria (human). C: circular fibre, R: radiate fibre, O: oblique fibre. (a) \times 400, (b) \times 400

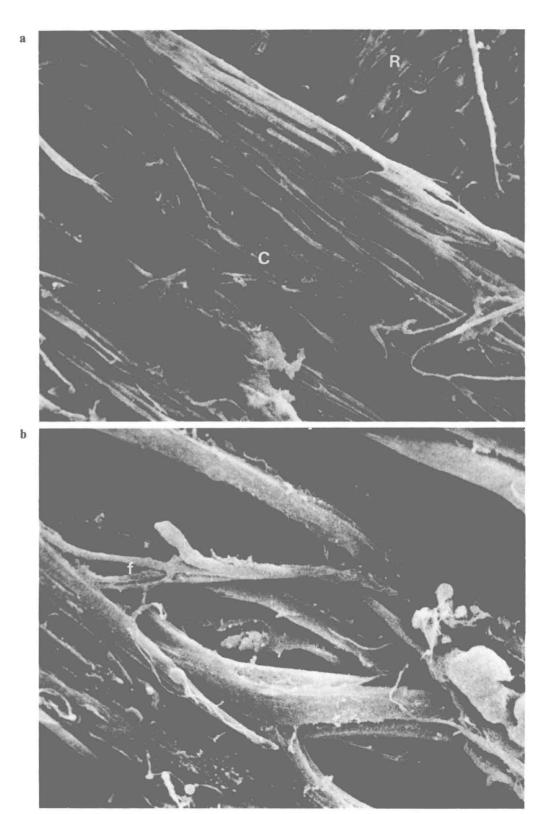
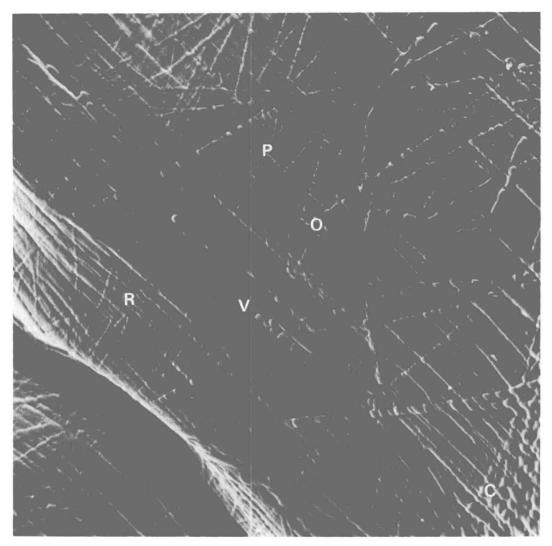



Figure 3 The circular (C) and the radiate (R) fibrous layers (human) (a) \times 400, (b) \times 4000

Figure 4 Lamina propria (guinea pig). The lamina propria of guinea pig is thinner than that of human. The oblique (O) and the circular fibres (C) are observed on the radiate fibres (R). Small vessels (V), which contain blood cells, are also seen (× 500)

Figure 5 Mucosa (human). The mucosa is covered by flat cells with a few microvilli. Since each cell body is relatively thin, the nucleus sometimes causes bulging on the cell surface. (a) Polygonal large cells are seen together with smaller cells (× 1400), (b) a cell with a centriole (× 4200)

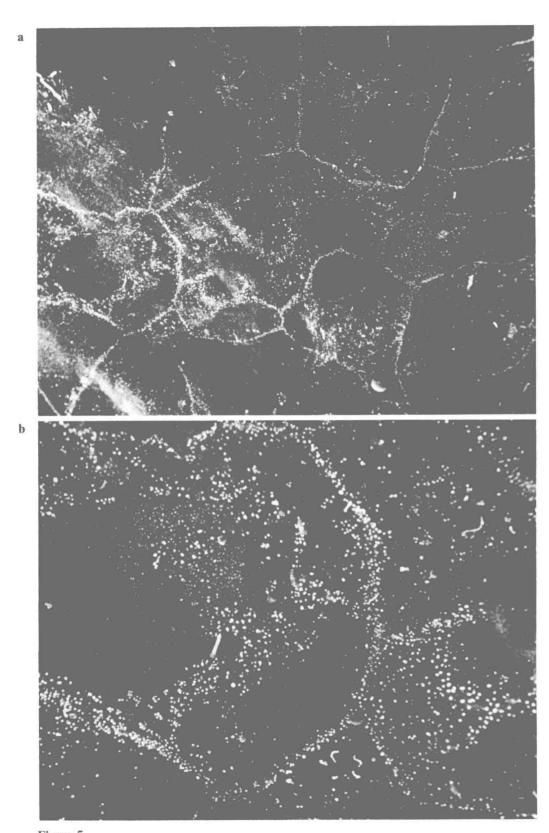


Figure 5