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Aims and Scope of the Series

The fundamental questions arising in mechanics are: Why?, How?, and How much?

The aim of this series is to provide lucid accounts written by authoritative
researchers giving vision and insight in answering these questions on the subject of
mechanics as it relates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it
includes the foundation of mechanics: variational formulations: computational
mechanics: statics, kinematics and dynamics of rigid and elastic bodies: vibrations
of solids and structures: dynamical systems and chaos; the theories of elasticity,
plasticity and viscoelasticity: composite materials: rods, beams, shells and mem-
branes; structural control and stability; soils, rocks and geomechanics; fracture;
tribology: experimental mechanics: biomechanics and machine design.

The median level of presentation is the first year graduate student. Some texts
are monographs defining the current state of the field: others are accessible to final
year undergraduates; but essentially the emphasis is on readability and clarity.



Preface

The structural and architectural potential of shell structures is used in various fields
of civil, architectural, mechanical, aeronautical, and marine engineering. The
strength of a (doubly) curved structure is efficiently and economically used, for
example, to cover large areas without supporting columns. In addition to the
mechanical advantages, the use of shell structures leads to esthetic architectural
appearance. Examples of shells used in civil and architectural engineering include
shell roofs, liquid storage tanks, silos, cooling towers, containment shells of
nuclear power plants, and arch dams. Piping systems, curved panels. pressure
vessels, bottles, buckets, and parts of cars, are examples of shells used in
mechanical engineering. In aeronautical and marine engineering, shells are used in
aircraft, spacecraft, missiles, ships, and submarines.

Similar to plate structures, one dimension of shell structures is small compared
to the others. However, because of their spatial shape, the behavior of shells is
different from that of plates. In flat plates, external loads are carried either by
membrane response or bending response. In shells, the loads are carried by both.
Similarly, both extensions and changes of curvature occur. As a result a mathe-
matical description of the properties of a shell is much more elaborate than for
beam and plate structures. Therefore many engineers and architects are unac-
quainted with aspects of shell behavior and design.

It took tens of years in the twentieth century to achieve sufficiently reliable shell
theories for the different shell types that occur. Some of the most famous names in
this respect are Love, Reissner, Wlassow, Morley, Fliigge, Novoshilov, Koiter,
Donnell, and Niordson. Well-known textbooks on the subject have also been
published by Pliiger. Riidiger, Timoshenko, and Wolmir. Rather than contributing
to theory development, this book is a university textbook, with a focus on archi-
tectural and civil engineering schools. Of course, practising professionals will
profit from it as well. In writing this book we had three aims: (i) providing insight
into the behavior of shell structures, (ii) explaining applied shell theories, and (iii)
applying numerical programs for design purposes.

The book deals only with thin elastic shells, in particular with cylindrical,
conical and spherical shells, and elliptic and hyperbolic paraboloids. The focus is
on roofs, chimneys, pressure vessels, and storage tanks. The reader is supposed to
be acquainted with the theory of flat plates loaded in-plane (shear walls, etc.) and
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loaded laterally (slabs, etc.). Material nonlinearity is not considered, and the
deformation due to transverse shear is not taken into account. Geometric nonlin-
earity is considered only in an introductory chapter on buckling of thin shells.
A substantial part of the book is derived from research efforts in the middle of the
twentieth century at the Civil Engineering Department of Delft University of
Technology by Bouma. Loof, and Van Koten. As such, we offer an addition to the
archive of literature dealing with developments in shell research that are of
continuing importance. Newer parts of the book come from doctoral thesis work of
Hoefakker under supervision of Blaauwendraad [18].

The wriple aim of the book is realized in the following way. We explain the
theory of shells for a number of shell types. We show structural designers how to
perform a manual calculation of the main force flow in a shell structure. We teach
them how to estimate the stresses and the deformations. Special attention is paid to
the characterization of edge bending effects. This is of prominent importance for
mesh design in edge zones in case the structural designer performs a Finite Ele-
ment Analysis.
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Chapter 1
Introduction to Shells

This book is concerned with thin elastic shells. A thin shell has a very small
thickness-to-minimal-radius ratio, often smaller than 1/50. As with plates, an
applied load that acts out-of-plane leads to larger displacements than those gen-
erated by a load acting in-plane with the same intensity. Due to its initial curvature,
a shell is able to transfer an applied load by in-plane as well as out-of-plane
actions. A thin shell subjected to an applied load therefore produces mainly
in-plane actions, which are called membrane forces. These membrane forces are
actually resultants of normal stresses and in-plane shear stresses that are uniformly
distributed across the thickness.

1.1 Shell Theories

A shell is a generalization of an isotropic homogeneous plate. Plates are flat
structures of which the dimensions in two in-plane directions are large compared
to the third direction perpendicular to the plate. The span in two directions is much
larger than the thickness. Plates are defined by their middle plane, thickness and
material properties. The displacements of the middle plane play the role of
degrees of freedom in structural modelling. In-plane loads of plates generate
in-plane membrane forces, and out-of-plane loads generate moments and trans-
verse shear forces.

Shells are also defined by their middle plane, thickness and material properties.
The difference with plates is that the middle plane of plates is flat, and that it is
curved in shells. As a consequence, shells can carry out-of-plane loads by in-plane
membrane forces, which is not possible for plates. In fact, this is the major reason
why shells are such strong and economic structures.

The theory of this membrane behaviour is called membrane theory. However,
membrane theory does not satisfy all equilibrium and/or displacement requirements
of all cases. For example (Fig. 1.1):

J. Blaauwendraad and J. H. Hoefakker. Structural Shell Analysis. 1
Solid Mechanics and Its Applications 200, DOI: 10.1007/978-94-007-6701-0_1.
© Springer Science+Business Media Dordrecht 2014
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Fig. 1.1 Membrane and bending conditions

e Boundary conditions and deformation constraints that are incompatible with the
requirements of a pure membrane field:

e Concentrated loads:

e Changes in geometry.

In the regions where the membrane theory will not hold, some (or all) of the
bending field components are produced to compensate the shortcomings of the
membrane field in the disturbed zone. These disturbances have to be described by
a more complete analysis, which will lead to a bending theory of thin elastic shells.

If the bending components occur, they often have a local range of influence.
Theoretical calculations and experiments show that the required bending compo-
nents attenuate and often bending is confined to boundaries where a pure mem-
brane solution does not exist. Therefore, in many cases the bending behaviour is
restricted to an edge disturbance. The undisturbed and major part of the shell
behaves like a true membrane. This unique property of shells is a result of the
curvature of the spatial structure. Efficient structural performance is responsible for
the widespread appearance of shells in nature. The continuous progress of
numerical methods for computational mechanics, combined with an efficient
structural performance and a pleasing shape, makes the application of shell
structures more and more possible and favourable. However, for the use of
numerical programs, some basic knowledge of the underlying theories and the
mechanical behaviour of the structure is needed.



