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Supervisors’ Foreword

With the advent of femtosecond laser pulses in the 1990s, real-time imaging of
ultrafast molecular phenomena has become possible. They are now used in a
systematic manner in pump-probe experiments to map out, in real time, nuclear
motion in molecules. In the past two decades, tremendous progress has been
achieved on the experimental front with the possibility to align molecules with
lasers and the production of attosecond pulses. In particular, the high-harmonic
generation technique that is responsible for the formation of attosecond laser pulses
has been exploited to image the faster electronic motion. In this context, it becomes
conceivable to create a new chemistry where all the different motions (rotational,
nuclear and electronic) in a molecular process could be manipulated and controlled
by laser pulses. The stakes are high and pose further substantial requirements on the
development of suitable theoretical methods. In addition, one important challenge is
to transfer to chemistry techniques (experimental and theoretical) that have been
developed mainly by physicists and for problems in physics.

The central subject of the present thesis is the theoretical description of ultrafast
dynamical processes in molecular systems of chemical interest and their control by
laser pulses. This work, performed in collaboration with experimentalists, can
be considered as a decisive step to link and apply quantum physics to chemistry by
transferring concepts developed in physics to chemistry such as “wavepackets” or
“light dressed states.” This is highlighted in Part II, where Dr. M. Sala exploits the
“adiabatic Floquet theory” to rationalize the control of several molecular processes.
When a molecular system is isolated, its quantum behavior can be described in
terms of eigenstates and wavepackets featuring linear combinations of the eigen-
states. However, when the system is in interaction with a time-dependent external
field, the situation is completely different as the eigenstates are modified by the
external fields. The adiabatic Floquet theory provides a quantum mechanical
framework for the description of the interaction of quantum systems with light.
More precisely, a description in terms of Floquet states or “light dressed states,” i.e.,
quantum states similar to eigenstates that additionally include rigorous
quantum-mechanical treatment of the mean frequency of the external fields (like in
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viii Supervisors” Foreword

the approach of “dressed atoms” in atomic physics). The laser parameters varying
slowly in time with respect to the mean frequency (such as the envelope of the pulse
and the chirp of the frequency) feature dynamical modification of the Floquet states,
topologically represented as dressed surfaces in the parameter space. With adiabatic
arguments, one can then characterize the quantum dynamics as trajectories in the
parameter space.

Dr. M. Sala’s Ph.D. encompasses cutting-edge methods not only for the rigorous
description of the interaction of light and matter at the molecular level but also in
quantum chemistry and molecular quantum dynamics. Indeed, one important aspect
of his work was the exploration of potential energy landscapes for electronic
excited states in organic molecules in the vicinity of so-called “conical intersec-
tions.” At a conical intersection, the potential energy surfaces belonging to different
electronic states become degenerate and the Born—-Oppenheimer approximation,
that separates the nuclear and electronic motions, fails: a nonadiabatic transfer from
one electronic state to another can occur. From ab initio electronic structure cal-
culations, Dr. M. Sala could build model Hamiltonians that can be used to solve, in
a second step, the Schrddinger equation for the nuclei. For the latter step, he
developed his own codes for low-dimensional simulations and exploited the
Heidelberg Multi-Configuration Time-Dependent Hartree (MCTDH) package
otherwise. The MCTDH approach is an efficient tool to solve both the
time-dependent and time-independent Schrodinger for relatively large systems.
Finally, Dr. M. Sala has highlighted general strategies for the coherent control of
strong quantum effects involving the nuclei in chemical process: tunneling and
strong nonadiabatic processes.

Altogether, this doctoral thesis lays out important foundations for the quantum
mechanical treatment of molecular processes that we anticipate to be very useful in
the context of applications of ultrafast laser pulses to chemistry. To conclude, we
were impressed by the level of autonomy of Dr. M. Sala and his strong ability to
take initiative at all the stages of his Ph.D. work.

Prof. Fabien Gatti
Prof. Stéphane Guérin
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Chapter 1
General Introduction

Light induced chemical transformations, called photochemical reactions, are
ubiquitous in nature. These processes are initiated by the absorption of a photon, that
promotes the molecule into an excited state, where the reaction takes place. Important
examples of photochemical reactions occurring in nature are the photolysis of ozone
and molecular oxygen in the stratosphere [1-3], the initial steps of the processes of
photosynthesis [4, 5] or of vision [6-9]. In addition, photochemical processes lie at
the heart of important emerging technologies, such as 3D optical memories based on
photoswitching molecular materials [10], Organic Light-Emitting Diodes (OLED)
[11, 12] or organic photovoltaics [13—16]. For these reasons, a detailed understand-
ing of photochemical processes at the molecular level is a major goal of modern
physical chemistry.

Thanks to the development of powerful experimental techniques, tremendous
progress in the understanding of photochemical processes have been made in the last
few decades. The 1999 Nobel prize in chemistry was awarded to Ahmed Zewail for
his seminal work on time-resolved spectroscopy of molecular processes on a fem-
tosecond time scale [17-20]. The characteristic time scale of the vibrational motion
of the nuclei in molecule being of the order of the hundred of femtoseconds, experi-
ments with a time resolution of the same order of magnitude or less are able to probe
the elementary steps (bond breaking, isomerizations, ...) of photochemical reactions.
Time-resolved spectroscopic techniques consist in making sequential spectroscopic
measurements on a system during a dynamical process, allowing one to record the
frames of a “movie” of a chemical transformation. In these techniques, the system
is irradiated by two laser pulses delayed in time with respect to each other. The first
laser pulse, called pump pulse, triggers a dynamical process via photoexcitation.
The second laser pulse, called probe pulse, is then used to monitor the system during
its evolution. Different probe techniques are available, such as transient absorption,
laser induced fluorescence or photoelectron spectroscopy. This procedure is repeated
with different delay times between the two laser pulses, yielding time-resolved spec-
troscopic data.

© Springer International Publishing Switzerland 2016 1
M. Sala, Quantum Dynamics and Laser Control for Photochemistry,
Springer Theses, DOI 10.1007/978-3-319-28979-3_1



2 1 General Introduction

Since the first experiments on the I-CN [21] bond cleavage and the wavepacket
oscillations between the ionic and covalent potentials in the photodissociation of
Nal [22, 23], pump-probe techniques have been applied to a wide range of important
photochemical processes. However, the data obtained from such experiments are
often difficult to interpret and theoretical modeling is needed to get further insight
into the excited state dynamics of the systems of interest at the atomistic level. In
this context, the development of efficient and accurate computational methods for the
description of ground and excited electronic states of mid-size molecular systemsin a
balanced way [24, 25], has greatly facilitated the theoretical study of photochemical
processes.

During the same period, it became more and more evident that strong non-
adiabatic effects, occurring at regions of degeneracy between electronic states, called
conical intersections [26, 27], play an important role in a great number of cases. In
such situations, associated with a breakdown of the Born—Oppenheimer approxima-
tion, the electronic and nuclear motions are strongly coupled, giving rise to non-
radiative population transfers between electronic states, i.e population transfers that
occur because of the coupling of the electronic and nuclear motions rather than the
coupling with the electromagnetic field (Fig. 1.1).

Depending on their position and energetics with respect to the Franck—Condon
region of the excited state potential energy surface (the region occupied by the
wavepacket on the excited state potential energy surface immediately after a ver-
tical photoexcitation), conical intersections can mediate ultrafast internal conversion
processes from the excited state to the photoproducts on the ground state. A sys-
tematic exploration of the excited state potential energy surfaces, and their conical
intersections with the ground state potential energy surfaces, of the basic organic
chromophores using multi-configuration self-consistent field calculations, has been
launched in the nineties in the groups of Robb, Bernardi and Olivucci [28, 29]. In
most cases, these studies revealed the existence of low-lying conical intersections
between the first excited state and the ground state, at geometries consistent with
the observed photoproducts. This findings supported the hypothesis that low-lying

Fig. 1.1 Schematic view of
an ultrafast radiationless
decay process through a

conical intersection

Energy




1 General Introduction 3

conical intersections are ubiquitous in organic molecules, and act as key mechanis-
tic features in organic photochemistry, similarly to the transition state in thermal
reactions occurring on the ground electronic state.

Often, the relaxation of a molecule to its ground electronic state via a conical
intersection is associated with a competition between two situations. The molecule
can reach a region of the ground state potential energy surface corresponding to a
different isomer, or to a repulsive part resulting in a bond breaking process. This
situation is called photoreactivity. But the molecule can also reach the ground state
potential energy surface in the region of its equilibrium geometry. This situation
is called photostability. The competition between photoreactivity and photostability
(Fig. 1.2) is directly related to the topography of the potential energy surfaces around
the conical intersection [30-32].

The notion of photostability is very important in the field of molecular biology.
The molecular “building blocks of life”, such as the DNA bases or the amino acids,
often absorb in the ultra violet (UV) region of the electromagnetic spectrum. A UV
photon carries an energy which is of the same order of magnitude as the binding
energy associated with the weakest bonds of these molecules. Therefore, UV light
is potentially harmful for these compounds and, by extension, for life. This is, how-
ever, in contradiction with the exceptional photostability observed experimentally
for these molecules and their complexes. A large number of theoretical and experi-
mental investigations, performed over the last two decades, have established that this
exceptional photostability is related with the existence of conical intersections pro-
viding extremely efficient radiationless decay channels leading the molecules back
to their ground state [33-37].

Nevertheless, although the characterization of the topography of potential energy
surfaces using electronic structure calculations often provides a qualitative under-
standing of the mechanisms of photochemical transformations, a deeper insight into
such processes often requires simulating the dynamics of the nuclei. For instance, it
is known that the existence of conical intersections is often reflected in the absorption

Y

\

Ax R L

Fig.1.2 Illustration of the competition between photostability (featured in red) and photoreactivity
(featured in blue) in two different situations: a non-adiabatic photodissociation process (left panel)
and a non-adiabatic photoisomerization process (right panel)




4 1 General Introduction

Fig. 1.3 Structure of the H
butatriene molecule N / H
/C =C=C :C\
H H

spectra through the presence of unexpected bands or of bands presenting an unusually
complicated and broad profile. An interesting and historically important example is
provided by the photoelectron spectrum of the butatriene molecule (see Fig. 1.3).

Despite the fact that butatriene is a quite exotic molecule, it has attracted a con-
siderable attention in the spectroscopy community in the 70's because of the unusual
structure of its photoelectron spectrum in the region between 9 and 11 eV [38]. It was
known that the butatriene radical cation has only two electronic states in this energy
range, corresponding to the bands centered around 9.3 and 10.0eV (bands noted 1
and 2 in the left panel of Fig. 1.4). However, the photoelectron spectrum presents a
third, broad feature (noted 1’ in the left panel of Fig. 1.4) between these two bands
that cannot be directly assigned to a given electronic state, and was termed the “mys-
tery band”. It was shown later by Cederbaum et al. [39] that this “mystery band”
was a direct signature of the existence of a strong vibronic coupling between the two
lowest excited electronic states of the cation, manifested by a conical intersection of
the two corresponding potential energy surfaces. They constructed a model poten-
tial including the two most important vibrational modes and taking into account the
vibronic couplings and could reproduce the photoelectron spectrum, including the
“mystery band”, as seen in Fig. 1.4. Since then, thanks to the enormous progress
made in the methodology of molecular quantum dynamics calculations, absorption
and photoelectron spectra of molecular systems of increasing complexity showing
signatures of strong vibronic couplings have been simulated (see e.g. Chap. 7 in ref.
[26] and Chap. 6 in ref. [27]).

Beyond the computation of spectra, the simulation of the dynamics of the nuclei
has proven to be necessary for a proper understanding of a number of photochemical
processes. Indeed, in most systems, the excited state dynamics is governed by the
competition between several dynamical processes including several electronic states.
These processes can correspond to channels with similar energies and in this case, itis
difficult to predict the dynamics of the molecule using only the static information that
can be obtained from electronic structure calculations. However, the simulation of
such photochemical processes, which often involve large amplitude nuclear motions
and complicated potential energy surfaces, using quantum dynamics techniques,
remains a formidable challenge from the numerical point of view. For this reason, a
variety of computational techniques based on a mixed quantum-classical formalism
have been developed and used to study the excited state dynamics of mid-size molec-
ular systems such as, for instance, the DNA bases [40—42]. The most popular family
of such techniques is the trajectory surface-hopping method (see Chaps.11-13 in
ref. [27] and references therein). Other important methods in this category are the
ab initio multiple spawning method (see Chap. 9 in ref. [27] and references therein)
or the methods based on the Herman-Kluk semi-classical propagator combined with



