DE GRUYTER

Sergey D. Algazin, Igor A. Kijko

AEROELASTIC
VIBRATIONS AND
STABILITY OF PLATES
AND SHELLS

QIR



Sergey D. Algazin, Igor A. Kijko

Aeroelastic Vibrations
and Stability of Plates
and Shells

DE GRUYTER



Physics and Astronomy Classification Scheme 2010
302.60.Cb, 02.60.Lj, 02.70.Hm

Authors

Dr. Sergey D. Algazin

Russian Academy of Sciences
Institute for Problems in Mechanics
Prospect Vernadskogo 101
Moscow, 119526

Russia

algazinsd@mail.ru

Prof. Dr. Igor A. Kijko
Matveevsky str. 10-2-321
Moscow, 119517

Russia
elast5539@mail.ru

ISBN 978-3-11-033836-2

e-ISBN (PDF) 978-3-11-033837-9
e-ISBN (EPUB) 978-3-11-038945-6
Set-ISBN 978-3-11-040491-3
ISSN 2194-3532

Library of Congress Cataloging-in-Publication Data
A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2015 Walter de Gruyter GmbH, Berlin/Munich/Boston
Typesetting: PTP-Berlin, Protago-TgX-Production GmbH, Berlin
Printing and binding: CPl books GmbH, Leck

® Printed on acid-free paper

\d
Printed in Germany MiX
Papiet aus verantwor-

tungsvallen Quallen
ESME FSC* C003147

www.degruyter.com



This book is dedicated to the memory of a prominent scientist in mechanics and our
teacher, A. A. Ilyushin.



Preface

Vibrations of engineering structures, aircraft elements (wings, fins), and thin-walled
structural elements occurring upon their interaction with gas flow (as a rule, air flow)
are referred to as “flutter”. One has to distinguish three main types of such vibrations:
the classical flutter, exemplified by vibrations of aircraft wings and fins; stall flutter,
exemplified by vibrations of suspension bridges, tall stacks; and panel flutter, to which
vibrations of thin-walled elements (plates, shallow shells) of aircraft or rockets at (for
the most part) supersonic speeds belong.

The growth of scientific interest in these phenomena was especially pronounced
in the 1930s because of developments in aviation. We quote Russian test pilot M. L. Gal-
lay: “With new high-speed aircraft becoming available, a wave of mysterious and un-
explained air accidents rolled over almost all the developed countries. Casual eyewit-
nesses who spotted these accidents from the ground in all the cases described nearly
the same picture: the aircraft was flying absolutely normally with nothing alarming
noticed, and then suddenly some unknown force, as if by explosion, destroyed the
aircraft — and the next moment twisted debris, wings, fins, body, are falling to the
ground ... All the eyewitnesses independently described what they saw as an explo-
sion ... However, investigation did not confirm this version: no traces of explosives,
soot, or any burnt material were found on the debris ... This new dangerous phe-
nomenon was named “flutter”, but, if I remember correctly, it was Moliére who said
that a sick person does not get well sooner only because he knows what his illness is
called in Latin™. This is a description of classical flutter.

A dramatic example of stall flutter is the Tacoma Narrows Bridge catastrophe in
the USA, in which a suspension bridge (span 854 m, width 11.9 m) collapsed in 1940;
see description of this accident in the above-quoted book.

A classical example of panel flutter is plate vibration in supersonic gas flow. The
solution of many particular problems of this class became possible after A. A. Ilyushin
discovered in 1947 the law of plane sections in high supersonic speed aerodynamics,
after which the problem of panel flutter for plates (and, later, shallow shells) was
formulated in a closed (by that time) form, leading to the development of effective
analytical research methods. This (and other) questions are discussed in this book.

When writing this book, we did not aim to encompass or generalize the exten-
sive bhibliography on panel flutter available today (more than 700 works have been
published on the subject since the 1930s). The main purpose was different: within
the framework of mathematical models of the phenomenon which have been devel-
oped up till now, to present analytical and efficient numerical methods by which dif-

1 Quoted from: Ya. G. Panovko and I. I. Gubanova. Stability and Vibrations of Elastic Systems. Moscow,
Fizmatlit, 1964, pp. 251-252.
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ferent classes of panel flutter problems can be solved for plates and shallow shells.
For this reason, only a few particular examples are considered in the book; we give
preference to new problem formulations, mathematical substantiation of the research
methods developed, and clarification of new mechanical effects. Some aspects of the
approach, especially mathematical, have not yet been well-developed; we have noted
some such aspects within the text, while others can be noticed by the thoughtful
reader. We would greatly appreciate any comments with respect either to its content,
or to possible further developments.

We hope that this book will be of interest to everyone involved in the analysis of
dynamic stability of thin-walled structures.

We wish to acknowledge the financial support by the Russian Foundation for Ba-
sic Research (Grants No. 95-01-00407, 97-01-00923, and 05-01-00250).
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Introduction

In this book, vibrations of plates and shallow shells interacting with air flow are con-
sidered. As a rule, the main problem to be solved is to find out the parameter domain
in which the vibrations are stable. The geometry and mechanical propetrties of the
vibrating structural element are usually known; therefore, the question is the determi-
nation of flow velocity beyond which vibrations become unstable. The phenomenon
of possible vibration instability is referred to as panel flutter, and the corresponding
velocity is known as the critical flutter velocity.

The panel flutter problem became of particular interest during the post-war years
of the 20th century, due to rapid development of aerospace engineering. Theoretical
progress was promoted by the discovery of the law of plane sections in the aerody-
namics of high supersonic velocities, which enabled, generally speaking, the coupled
aeroelasticity problem to be resolved by a simple formula of the “piston theory”.

The first studies relying on the piston theory were performed in the 1950s by
A.A. Movchan et al. They considered the flutter problem for a rectangular plate in
the simplest case where the flow velocity vector lies in the plane of the plate and
is parallel to one of its edges. If asymptotic stability is of interest (which has been
the case in the majority of past and current flutter studies), the problem is reduced
to the analysis of the dependence of spectrum of a non-self-adjoint operator of the
fourth order (its main part is the biharmonic operator) on the flow velocity. Evidently,
even in this simplest formulation the flutter problem is far from trivial. Nevertheless,
A.A. Movchan et al. obtained results which highlighted the essential points of the
problem and, therefore, for a long time were considered as reference solutions.

Further development of approaches to flutter problem which followed these fun-
damental results did not touch upon the basic points of the theory: the forces of aero-
dynamic interaction of flow and vibrating element were described by the piston theory
formula even in the cases where its applicability is questionable (a dramatic example
is the flutter of a conical shell subjected to internal gas flow at high supersonic speed).
At the same time, no attempts were made to formulate the flutter problem for a plate
or shallow shell of arbitrary plan view shape; and such mathematical aspects as ex-
istence of the solution, general properties, structure of the spectrum, etc., were not
touched upon. The large number of papers published in that period is attributed to the
consideration of a variety of boundary condition combinations, physical effects of dif-
ferent nature (temperature, electromagnetic field), mechanical properties (viscoelas-
tic, multilayered, anisotropic plates and shells), etc. The situation changed in the mid-
1990s. On the one hand, new statements of flutter problems for plates and shells as
parts of the aircraft cover at high supersonic velocities were formulated. On the other
hand, a numerical-analytical nonsaturating method was developed which enabled
an efficient solution of eigenvalue problems for non-self-adjoint operators (or systems
of such operators) arising in the flutter studies. Taken together, these achievements
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allowed the class of flutter problems to be significantly extended and new mechanical
effects to be obtained. These results, belonging, for the most part, to the authors and
their colleagues, comprise the content of this book.

When presenting the material, as a rule we do not make reference to the original
works and their authors. However, each part of the book begins with a brief introduc-
tion which indicates which works form the basis of the respective material.
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The flutter problem for a rectangular plate was first formulated and studied to
large extent by A. A. Movchan in the 1950s [495-498]. These results, today regarded
as classical, became possible after A. A. Ilyushin discovered in 1947 the law of plane
sections in high-speed aerodynamics [310]. One of its consequences is the local for-
mula of the piston theory for additional pressure exerted by gas onto the vibrating
plate, by which the flutter problem is reduced to an eigenvalue problem for a non-
self-adjoint operator. A. A. Movchan et al. considered the problem in a rather limited
particular case, where the flow velocity vector is parallel to one of the plate sides;
numerous further works by other authors were devoted to a rather straightforward
extension of the theory onto multilayered plates, account for the effects of different
physical fields, etc.

The situation changed in mid-1990s when new formulations of panel flutter
problems were presented by A.A. Ilyushin and L. A. Kijko [311]. Based on these
formulations, the general spectral properties of the flutter operator were obtained,
a numerical-analytical method was developed which enabled the spectrum to be
studied, new classes of problems were solved, and new mechanical effects were
discovered (I. A. Kijko and S. A. Algazin) [33-39, 41]. These results form the basis of
the material presented in this section.

Also presented are some particular results on the flutter of plates of variable thick-
ness or stiffness, as well as one special case of the optimization problem (V. I. Isaev and
A. K. Kadyrov) [316, 330]. A new solution for the flutter of viscoelastic plate is given
which resolves the long-existing critical flutter velocity paradox [350, 356].



1 Statement of the problem

Consider a plate occupying a domain S on the x,y plane, bounded by the contour I
(hereafter, T is supposed to be piecewise-smooth). One side of the plate is subjected to
gas flow with the velocity vector v = {vx, vy} ={vcos@,vsinB}, v = |v|. If, in addition
to the unperturbed state w, = 0, we consider a perturbation w = w(x, y, t), then the
aerodynamic pressure Ap caused by interaction with the perturbed flow appears. It
will be shown in the following analysis that Ap is a linear operator of w, which will
allow us to present the solution in the form w = ¢ (x,y) exp(wt), Ap = Apy(x,y) exp(wt)
in all cases except the flutter problem for a viscoelastic plate.
The equation for vibrations of a constant-thickness plate takes the form
2
DA*w + ph% = Ap, (1.1)
where D = Eh’/(12(1-v?)) is the cylindrical rigidity, E, v, and p are Young’s modulus,
Poisson’s ratio, and density of plate material, and h is its thickness. From the above
considerations, we have Ap, = L,(¢) + L,(¢,w), and therefore, (1.1) can be rewritten
in the form
DA*@ + L,(@) + phw’@ + Ly(p;w) = 0. (1.2)

On the contour T, the deflection amplitude ¢ (x, y) satisfies the boundary condi-

tions
X,,V € r) Ml(‘p) = 0) MZ((P) = 0) (1'3)

where the boundary operators M; and M, are problem-specific and will be given in
each particular case. We assume hereafter that the plate is not subjected to any loads
in its median plane.

The system of equations (1.2) and (1.3) represents a complicated eigenvalue prob-
lem with a non-self-adjoint operator; its eigenvalues are denoted by w. By definition,
we take that the perturbed motion of the plate is stable if Rew < 0, and unstable if
Rew > 0; the critical parameters of the system (plate, flow) are determined by the
condition Rew = 0. In the further analysis, we consider the following main ques-
tions: determination of Ap, formulation of new problems; development of an efficient
analytical approach, and identification of new mechanical effects.



2 Determination of aerodynamic pressure

Numerous studies on the vibrations and stability of plates in supersonic high-speed
flows are carried out on the basis of the piston theory for the aerodynamic pressure
Ap caused by the interaction of the flow and vibrating plate. This formulation has
become so common that it was applied even in the cases where its validity is ques-
tionable. Here, we derive Ap in the cases of “moderate” supersonic (M ~ 1.5-2) and
low subsonic velocities.

Consider an elastic strip occupying domain S : {0 < x <Ly = 0,|z| < co}. On the
side y > 0, the strip is placed in a gas flow with unperturbed parameters (planar
problem) v = {uy, 0}, Pg, Po» @y = (yPo/Po)"/?, so that the unperturbed flow potential is
©, = Upx. Small vibrations of the strip w(x, t) (with w/€ « 1) cause flow perturbation;
the perturbed flow potential is denoted by ¢, = ¢, + ¢. Then we proceed in the usual
way: from the Cauchy-Lagrange integral, equations of motion, mass conservation,
and equation of state we obtain an equation for ¢, and linearize it with respect to the
perturbation ¢ to obtain

1 0% 3 e M ¢

a ot (M -1) 55 ol a, 0xot  0y> i 21)
where M = u,/a,. The potential ¢ must vanish at infinity and satisfy the imperme-
ability condition on the line y = 0:

y=0, 0<x<l, —y=—+u— (2.2)

0
y=0, x<0, x> a—:O. (2.3)

The overpressure in the flow is obtained from
_ op o )
p= po( = + Uy o) (2.4)

We search for the solution in the class of functions @ (x,y,t) = f(x,y)exp(wt),
wix, t) = Wk)exp(wt), and p(x,y,t) = qlx,y)exp(wt). Introduce now the non-
dimensional coordinates x/l and y/l, retaining hereafter the previous notation. Also,
introduce the nondimensional frequency lw /a, = Q. The system of equations (2.1)-
(2.4) is transformed to

M —1)—f+2MQaa‘p Qf—ﬂ_o (2.5)
K ow
y=0, O0<x<1, £=aO(QW+Ma—) (2.6)
op
=0, x<0, x>1, =—==0 .
y X< x> 3 2.7)

g =P (Qf + Mﬁ)_ (2.8)
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In what follows, it is necessary to distinguish the cases of M < 1and M > 1; we

consider them one by one.
For M > 1, perturbations are absent to the left of the point x = 0; therefore, it

is possible to apply the Laplace transform along the x coordinate; condition (2.7) is
not relevant, and the function W(x) can be prolonged to x > 1 arbitrarily (as long
as applicability conditions for the Laplace transform are satisfied), and this will not
affect the overpressure g(x, 0) acting on the strip. From (2.5) we obtain for the Laplace
transform f(s, y)

ﬁf— =0, B’=(M*-1)s*+2MQs+ Q.
A solution bounded at mﬁmty is
F=ce?. (2.9)

From the boundary condition (2.8) for Laplace transform

of .

=—| =-Bc; =ay(Q+ Ms)W

% ly-o !
it is possible to determine the parameter c,, and therefore it follows from (2.9) that

= Q+ Ms - -By

f=-a ——B—We (2.10)

The overpressure (in terms of Laplace transforms) is now obtained from equation (2.8):
Pod; (Q + Ms)?
! B
The inverse Laplace transform is found from tables and convolution theorem., We
first write = VM? — 14/(s + 5,)(s + 5,) = VM? — 1835, = Q/(M-1),s, = Q/(M + 1);
(5p +5,)/2=MQ/ (M* - 1) =ay; (5, -5,)/2 = Q/ (M* - 1) =
We now have

q(s,0) = Ap(s) = W(s). (2.11)

L(«l) <ﬁio) _ Io(azx)e—mx = H(x),

where I[,(2) is the modified Bessel function; therefore

()

H(x - 1)W(r)dr

H(x - r)—dr

o-_.k Otm—

0
o X
¥ w 0 ow
L ”(_)=_J _W
B p J Hx-1) B dr.
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We perform the necessary calculations and substitute the results in equation (2.11) to
obtain finally

2 2
_ poapM M® -2 ow
Ap(x) S 17 [MZ QW + M
(M*+2)Q* ¢ )
L il J e DL (o, (x - 7)) W(r) dr
2M(M? - 1) ¢
2.12)
- 2—02 Ie”“""'”] (a;(x - 7)) W(r)dr
(M2 -1)* ) L
- Jxe-“ﬂx-”z (o, (x — 1)) W(r) dr
2(M2 - 1)’ o ’

0

where I (z), v = 1, 2, are the modified Bessel functions.
There are important implications of equation (2.12):

1. Theformula of the piston theory is obtained in the limit M > 1, and it is valid only
for the calculation of a few first eigenvalues Q, such that |Q,|/M? ~ 1 (or |a,| ~ 1),
because I,,(z) grow exponentially with increasing argument. This important point
has not been taken into account so far.

2. If|z| < 1, then [(z) ~ (z/2)", therefore for “moderately” supersonic velocities
M? > 2 the first few eigenvalues Q, can be calculated with the last two integral
terms in equation (2.12) omitted and, also, with Ap(x) taken in the form

2 2
Po%M | M” -2 ow
o [M2—10W+Max
(M2+2)Qz [ —a,(x-T1)
+mje W(T)dT
0

Ap(x) = 7
(2.13)

Assume now that the plate occupies a domain S on plane x, y with a boundary I’, and
it is subjected to a gas flow with velocity v = vyn, = {v,cos8,v, sin6}. We assume
that the overpressure Ap(x, y) can be expressed by a formula which generalizes equa-
tion (2.13) (and, accordingly, (2.12)):

Ap(x,y) = fQW + Mn® grad W

IVMZ =1 | M? -
(M +2)0Q?
oM (M2 - 1)°

poagM |M2 -
(2.14)

[ ey ar |,
AB



