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Preface to the Second Edition

This is a revised and expanded version of my 2002 book on real analysis. Some
topics and chapters have been rewritten (i.e., Chaps. 7-10) and others have been
expanded in several directions by including new topics and, most importantly,
considerably more practice problems. Noteworthy is the collection of problems in
calculus with distributions at the end of Chap. 8. These exercises show how to solve
algebraic equations and differential equations in the sense of distributions, and how
to compute limits and series in D’. Distributional calculations in most texts are
limited to computing the fundamental solution of some linear partial differential
equations. We have sought to give an array of problems to show the wide appli-
cability of calculus in D’. I must thank U. Gianazza and V. Vespri for providing me
with most of these problems, taken from their own class notes. Chapter 9 has been
expanded to include a proof of the Riesz convolution rearrangement inequality in N-
dimensions. This is preceded by the topics on Steiner symmetrization as a supporting
background. Chapter 11 is new, and it goes more deeply in the local fine properties
of weakly differentiable functions by using the notion of p-capacity of sets in R". It
clarifies various aspects of Sobolev embedding by means of the isoperimetric
inequality and the co-area formula (for smooth functions). It also links to measure
theory in Chaps. 3 and 4, as the p-capacity separates the role of measures versus
outer measure, In particular, while Borel sets are p-capacitable, Borel sets of positive
and finite capacity are not measurable with respect to the measure generated by the
outer measure of p-capacity. Thus, it also provides an example of nonmetric outer
measures and non-Borel measure. As it stands, this book provides a background to
more specialized fields of analysis, such as probability, harmonic analysis, functions
of bounded variation in several dimensions, partial differential equations, and
functional analysis. A brief connection to BV functions in several variables is offered
in Sect. 7.2¢ of the Complements of Chap. 5.

The numbering of the sections of the Problems and Complements of each
chapter follow the numbering of the section in that chapter. Exceptions are Chaps. 6
and 8. Most of the Problems and Complements of Chap. 8 are devoted to calculus
with distributions, not directly related to the sections of that chapter.
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Sections 20c—23c¢ of the Complements of Chap. 6 are devoted to present the
Vitali-Saks—Hahn theorem. The relevance of the theorem is in that it gives suffi-
cient conditions on a set of integrable functions to be uniformly integrable. This in
turn it permits one to connect the notions of weak and strong convergence to
convergence in measure. In particular, as a consequence it gives necessary and
sufficient conditions for a weakly convergent sequence in L' to be strongly con-
vergent in L!. As an application, in £;, weak and strong convergence coincide
(Sects. 22¢-23c of Chap. 6).

Over the years, I have benefited from comments and suggestions from several
collaborators and colleagues including U. Gianazza, V. Vespri, U. Abdullah,

Olivier Guibé, A. Devinatz, J. Serrin', J. Manfredi, and several current and former
students, including Naian Liao, Colin Klaus Stockdale, Jordan Nikkel, and Zach
Gaslowitz Special thanks go to Ugo Gianazza and Olivier Guibé for having read in
detail large parts of the manuscript and for pointing out imprecise statements and
providing valuable suggestions. To all of them goes my deep gratitude.

This work was partially supported by NSF grant DMS-1265548.



Preface to the First Edition

This book is a self-contained introduction to real analysis assuming only basic
notions on limits of sequences in R", manipulations of series, their convergence
criteria, advanced differential calculus, and basic algebra of sets.

The passage from the setting in R" to abstract spaces and their topologies is
gradual. Continuous reference is made to the R" setting where most of the basic
concepts originated.

The first eight chapters contain material forming the backbone of a basic training
in real analysis. The remaining three chapters are more topical, relating to maximal
functions, functions of bounded mean oscillation, rearrangements, potential theory
and the theory of Sobolev functions. Even though the layout of the book is theo-
retical, the entire book and the last chapters in particular have in mind applications
of mathematical analysis to models of physical phenomena through partial differ-
ential equations.

The preliminaries contain a review of the notions of countable sets and related
examples. We introduce some special sets, such as the Cantor set and its variants
and examine their structure. These sets will be a reference point for a number of
examples and counterexamples in measure theory (Chapter 3) and in the Lebesgue
differentiability theory of absolute continuous functions (Chapter 5). This initial
Chapter contains a brief collection of the various notions of ordering, the Hausdorff
maximal principle, Zorn’s Lemma, the well-ordering principle, and their funda-
mental connections.

These facts keep appearing in measure theory (Vitali’s construction of a
Lebesgue non-measurable set), topological facts (Tychonov’s Theorem on the
compactness of the product of compact spaces; existence of Hamel bases) and
functional analysis (Hahn-Banach Theorem; existence of maximal orthonormal
bases in Hilbert spaces).

Chapter 2 is an introduction to those basic topological issues that hinge upon
analysis or that are, one way or another, intertwined with it. Examples include
Uhryson’s Lemma and the Tietze Extension Theorem, characterization of com-
pactness and its relation to the Bolzano-Weierstrass property, structure of the

vii
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compact sets in R", and various properties of semi-continuous functions defined on
compact sets. This analysis of compactness has in mind the structure of the compact
subsets of the space of continuous functions (Chapter 5) and the characterizations
of the compact subsets of the spaces L/ (E) for all 1 <p < oo (Chapter 6).

The Tychonov Theorem is proved with its application in mind in the proof of the
Alaoglu Theorem on the weak* compactness of closed balls in a linear, normed space.

We introduce the notion of linear, topological vector spaces and that of linear
maps and functionals and their relation to boundedness and continuity.

The discussion turns quickly to metric spaces, their topology, and their structure.
Examples are drawn mostly from spaces of continuous or continuously differen-
tiable functions or integrable functions. The notions and characterizations of
compactness are rephrased in the context of metric spaces. This is preparatory to
characterizing the structure of compact subsets of L/(E).

The structure of complete metric spaces is analyzed through Baire’s Category
Theorem. This plays a role in subsequent topics, such as an indirect proof of the
existence of nowhere differentiable functions (Chapter 5), in the structure of Banach
spaces (Chapter 6), and in questions of completeness and non-completeness of
various topologies on C;°(E) (Chapter 8).

Chapter 3 is a modern account of measure theory. The discussion starts from the
structure of open sets in RV as sequential coverings to construct measures and a
brief introduction to the algebra of sets. Measures are constructed from outer
measure by the Charathéodory process. The process is implemented in specific
examples such as the Lebesgue-Stiltjes measures in R and the Hausdorff measure.
The latter seldom appears in introductory textbooks in Real Analysis. We have
chosen to present it in some detail because it has become, in the past two decades,
an essential tool in studying the fine properties of solutions of partial differential
equations and systems. The Lebesgue measure in R" is introduced directly starting
from the Euclidean measure of cubes rather than regarding it, more or less
abstractly, as the N-product of the Lebesgue measure on R. In RY, we distinguish
between Borel sets and Lebesgue measurable sets, by cardinality arguments and by
concrete counterexamples.

For general measures, emphasis is put on necessary and sufficient criteria of
measurability in terms of Gs and F,. In this, we have in mind the operation of
measuring a set as an approximation process. From the applications point of view,
one would like to approximate the measure of a set by the measure of measurable
sets containing it and measurable sets contained into it. The notion is further
expanded in the theory of Radon measures and their regularity properties.

It is also further expanded into the covering theorems, even though these rep-
resent an independent topic in their own right. The Vitali Covering Theorem is
presented by the proof due to Banach. The Besicovitch covering is presented by
emphasizing its value for general Radon measures in RY. For both, we stress the
measure-theoretical nature of the covering as opposed to the notion of covering a
set by inclusion.
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Coverings have made possible an understanding of the local properties of
solutions of partial differential equations, chiefly the Harnack inequality for
non-negative solutions of elliptic and parabolic equations. For this reason, in the
Complements of this chapter, we have included various versions of the Vitali and
Besicovitch covering theorems.

Chapter 4 introduces the Lebesgue integral. The theory is preceded by the
notions of measurable functions, convergence in measure, Egorov’s Theorem on
selecting almost everywhere convergent subsequences from sequences convergent
in measure, and Lusin’s Theorem characterizing measurability in terms of
quasi-continuity. This theorem is given relevance as it relates measurability and
local behavior of measurable functions. It is also a concrete applicatign of the
necessary and sufficient criteria of measurability of the previous chapter.

The integral is constructed starting from non-negative simple functions by the
Lebesgue procedure. Emphasis is placed on convergence theorems and the Vitali’s
Theorem on the absolute continuity of the integral. The Peano-Jordan and Riemann
integrals are compared to the Lebesgue integral by pointing out differences and
analogies.

The theory of product measures and the related integral is developed in the
framework of the Charathéodory construction by starting from measurable rect-
angles. This construction provides a natural setting for the Fubini-Tonelli
Theorem on multiple integrals.

Applications are provided ranging from the notion of convolution, the conver-
gence of the Marcinkiewicz integral, to the interpretation of an integral in terms
of the distribution function of its integrand.

The theory of measures is completed in this chapter by introducing the notion of
signed measure and by proving Hahn’s Decomposition Theorem. This leads to
other natural notions of decompositions such as the Jordan and Lebesgue
Decomposition Theorems. It also suggests naturally other notions of comparing two
measures, such as the absolute continuity of a measure v with respect to another
measure u. It also suggests representing v, roughly speaking, as the integral of u by
the Radon-Nykodym Theorem.

Relating two measures finds application in the Besicovitch-Lebesgue Theorem,
presented in the next chapter, and connecting integrability of a function to some of
its local properties.

Chapter 5 is a collection of applications of measure theory to issues that are at
the root of modern analysis. What does it mean for a function of one real variable to
be differentiable? When can one compute an integral by the Fundamental
Theorem of Calculus? What does it mean to take the derivative on an integral?
These issues motivated a new way of measuring sets and the need for a new notion
of integral.

The discussion starts from functions of bounded variation in an interval and their
Jordan’s characterization as the difference of two monotone functions. The notion
of differentiability follows naturally from the definition of the four Dini’s numbers.
For a function of bounded variation, its Dini numbers, regarded as functions, are
measurable. This is a remarkable fact due to Banach.
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Functions of bounded variations are almost everywhere differentiable. This is a
celebrated theorem of Lebesgue. It uses, in an essential way, Vitali’s Covering
Theorem of Chapter 3.

We introduce the notion of absolutely continuous functions and discuss simi-
larities and differences with respect to functions of bounded variation. The
Lebesgue theory of differentiating an integral is developed in this context. A natural
related issue is that of the density of a Lebesgue measurable subset of an interval.
Almost every point of a measurable set is a density point for that set. The proof uses
a remarkable theorem of Fubini on differentiating term by term a series of monotone
functions.

Similar issues for functions of N real variables are far more delicate. We present
the theory of differentiating a measure v with respect to another p by identifying
precisely such a derivative in terms of the singular part and the absolutely con-
tinuous part of u with respect to v. The various decompositions of measures of
Chapter 4 find here their natural application, along with the Radon-Nykodym
Theorem.

The pivotal point of the theory is the Besicovitch-Lebesgue Theorem asserting
that the limit of the integral of a measurable function f when the domain of inte-
gration shrinks to a point x actually exists for almost all x and equals the value of f
at x. The shrinking procedure is achieved by using balls centered at x, and the
measure can be any Radon measure. This is the strength of the Besicovitch covering
theorem. We discuss the possibility of replacing balls with domains that are,
roughly speaking, comparable to a ball. As a consequence, almost every point of an
N-dimensional Lebesgue-measurable set is a density point for that set.

The final part of the chapter contains an array of facts of common use in real
analysis. These include basic facts on convex functions of one variable and their
almost everywhere double differentiability. A similar fact for convex functions of
several real variables (known as the Alexandrov Theorem) is beyond the scope
of these notes. In the Complements, we introduce the Legendre transform and
indicate the main properties and features.

We present the Ascoli-Arzelda Theorem, keeping in mind a description of
compact subsets of spaces of continuous functions.

We also include a theorem of Kirzbraun and Pucci extending bounded, con-
tinuous functions in a domain into bounded, continuous functions in the whole RY
with the same upper bound and the same concave modulus of continuity. This
theorem does not seem to be widely known.

The final part of the chapter contains a detailed discussion of the
Stone-Weierstrass Theorem. We present first the Weierstrass Theorem (in N
dimensions) as a pure fact of Approximation Theory. The polynomials approxi-
mating a continuous function f in the sup-norm over a compact set are constructed
explicitly by means of the Bernstein polynomials. The Stone Theorem is then
presented as a way of identifying the structure of a class of functions that can be
approximated by polynomials.
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Chapter 6 introduces the theory of L” spaces for 1<p<oc. The basic
inequalities of Holder and Minkowski are introduced and used to characterize the
norm and the related topology of these spaces. A discussion is provided to identify
elements of LF(E) as equivalence classes.

We introduce also the [”(E) spaces for 0<p <1 and the related topology. We
establish that there are not convex open sets except L7 (E) itself and the empty set.

We then turn to questions of convergence in the sense of LP(E) and their
completeness (Riesz-Fisher Theorem) as well as issues of separating such spaces by
simple functions. The latter serves as a tool in the notion of weak convergence of
sequences of functions in L7 (E). Strong and weak convergence are compared and
basic facts relating weak convergence and convergence of norms are stated and
proved.

The Complements contain an extensive discussion comparing the various
notions of convergence.

We introduce the notion of functional in L”(E) and its boundedness and conti-
nuity and prove the Riesz representation Theorem, characterizing the form of all the
bounded linear functionals in L7(E) for 1 < p < oco. This proof is based on the
Radon-Nykodym Theorem and as such is measure theoretical in nature.

We present a second proof of the same theorem based on the topology of L”. The
open balls that generate the topology of L7(E) are strictly convex for 1<p<oc.
This fact is proved by means of the Hanner and Clarkson’s inequality, which while
technical, are of interest in their own right.

The Riesz Representation Theorem permits one to prove that if E is a
Lebesgue-measurable set in RY, then [7(E) for 1 <p <o, are separable. It also
permits one to select weakly convergent subsequences from bounded ones. This
fact holds in general, reflexive, separable Banach spaces (Chapter 7). We have
chosen to present it independently as part of the L” theory. It is our point of view
that a good part of functional analysis draws some of its key facts from concrete
spaces, such as spaces of continuous functions, the I, space and the spaces /.

The remainder of the chapter presents some technical tools regarding L7 (E) for
E. a Lebesgue-measurable set in R", to be used in various parts of the later
chapters. These include the continuity of the translation in the topology of L7 (E),
the Friedrichs mollifyiers, and the approximation of functions in L”(E) with C*(E)
functions. It includes also a characterization of the compact subsets in [7(E).

Chapter 7 is an introduction to those aspects of functional analysis closely related
to the Euclidean spaces R", the spaces of continuous functions defined on some
open set £ C RY, and the spaces L”(E). These naturally suggest the notion of finite
dimensional and infinite dimensional normed spaces. The difference between the
two is best characterized in terms of the compactness of their closed unit ball. This
is a consequence of a beautiful counterexample of Riesz.

The notions of maps and functionals is rephrased in terms of the norm topology.
In RY, one thinks of a linear functional as an affine functions whose level sets are
hyperplanes through the origin. Much of this analogy holds in general normed
spaces with the proper rephrasing.
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Families of pointwise equi-bounded maps are proven to be uniformly
equi-bounded as an application of Baire’s Category Theorem.

We also briefly consider special maps such as those generated by Riesz potential
(estimates of these potentials are provided in Chapter 9), and related Fredholm
integral equations.

A proof of the classical Open Mapping Theorem and Closed Graph Theorem are
presented as a way of inverting continuous maps to identify isomorphisms out of
continuous linear maps.

The Hahn-Banach Theorem is viewed in its geometrical aspects of separating
closed convex sets in a normed space and of “drawing” tangent planes to a convex
set.

These facts all play a role in the notion of weak topology and its properties.
Mazur’s Theorem on weak and strong closure of convex sets in a normed space is
related to the weak topology of the L7 (E) spaces. These provide the main examples,
as convexity is explicit through Clarkson’s inequalities.

The last part of the chapter gives an introduction to Hilbert spaces and their
geometrical aspects through the parallelogram identity. We present the Riesz
Representation Theorem of functionals through the inner product. The notion of
basis is introduced and its cardinality is related to the separability of a Hilbert space.
We introduce orthonormal systems and indicate the main properties (Bessel's
inequality) and some construction procedures (Gram-Schmidt). The existence of a
complete system is a consequence of the Hausdorff maximum principle. We also
discuss various equivalent notions of completeness.

Chapter 8 is about spaces of real-valued continuous functions, differentiable
functions, infinitely differentiable functions with compact support in some open set
E c R", and weakly differentiable functions.

Together with the I”(E) spaces, these are among the backbone spaces of real
analysis.

We prove the Riesz Representation Theorem for continuous functions of com-
pact support in RY. The discussion starts from positive functionals and their rep-
resentation. Radon measures are related to positive functionals and bounded, signed
Radon measures are related to bounded linear functionals. Analogous facts hold for
the space of continuous functions with compact support in some open set £ C RY.

We then turn to making precise the notion of a topology for C)F(E).
Completeness and non-completeness are related to metric topologies in a con-
structive way. We introduce the Schwartz topology and the notion of continuous
maps and functionals with respect to such a topology. This leads to the theory of
distributions and its related calculus (derivatives, convolutions etc. of distributions).

Their relation to partial differential equations is indicated through the notion of
fundamental solution. We compute the fundamental solution for the Laplace
operator also in view of its applications to potential theory (Chapter 9) and to
Sobolev inequalities (Chapter 10).

The notion of weak derivative in some open set £ C RY is introduced as an
aspect of the theory distributions. We outline their main properties and state and
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prove the by now classical Meyers-Serrin Theorem. Extension theorems and
approximation by smooth functions defined in domains larger than E are provided.
This leads naturally to a discussion of the smoothness properties of OE for these
approximations and/or extensions to take place (cone property, segment property,
etc.).

We present some calculus aspects of weak derivatives (chair rule, approxima-
tions by difference quotients, etc.) and turn to a discussion of W*°(E) and its
relation to Lipschitz functions. For the latter, we conclude the chapter by stating and
proving the Rademaker Theorem.

Chapter 9 is a collection of topics of common use in real analysis and its
applications. First is the Wiener version of the Vitali Covering Theorem (cammonly
referred to as the “simple version” of Vitali’s Theorem). This is applied to the
notion of maximal function, its properties, and its related strong type L” estimates
for 1 <p<oc. Weak estimates are also proved and used in the Marcinkiewicz
Interpolation Theorem. We prove the by now classical Calder6n-Zygmund
Decomposition Theorem and its applications to the space functions of bounded
mean oscillation (BMO) and the Stein-Fefferman [/ estimate for the sharp maximal
function.

The space of BMO is given some emphasis. We give the proof of the
John-Nirenberg estimate and provide its counterexample. We have in mind here the
limiting case of some potential estimates (later in the chapter) and the limiting
Sobolev embedding estimates (Chapter 10).

We introduce the notion of rearranging the values of functions and provide their
properties and the related notion of equi-measurable function. The discussion is for
functions of one real variable. Extensions to functions of N real variables are
indicated in the Complements.

The goal is to prove the Riesz convolution inequality by rearrangements. The
several proofs existing (Riesz, Zygmund, Hardy-Littlewood-Polya) all use, one way
or another, the symmetric rearrangement of an integrable function.

We have reproduced here the proof of Hardy-Littlewood-Polya as appearing in
their monograph [70]. In the process, we need to establish Hardy’s inequality, of
interest in its own right.

The Riesz convolution inequality is presented in several of its variants, leading
to an N-dimensional version of it through an application of the continuous version
of the Minkowski inequality.

Besides its intrinsic interest of these inequalities, what we have in mind here is to
recover some limiting cases of potential estimates an their related Sobolev
embedding inequalities.

The final part of the chapter introduces the Riesz potentials and their related L7
estimates, including some limiting cases. These are on one hand based on the
previous Riesz convolution inequality, and on the other hand to Trudinger’s version
of the BMO estimates for particular functions arising as potentials.

Chapter 10 provides an array of embedding theorems for functions in Sobolev
spaces. Their importance to analysis and partial differential equations cannot be
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underscored. Although good monographs exist ([1, 104]), I have found it laborious
to extract the main facts, listed in a clean manner and ready for applications.

We start from the classical Gagliardo-Nirenberg inequalitites and proceed to
Sobolev inequalities. We have made an effort to trace, in the various embedding
inequalities, how the smoothness of the boundary enters in the estimates. For
example, whenever the cone condition is required, we trace back in the various
constant the dependence on the height and the angle of the cone. We present the
Poincaré inequalities for bounded, convex domains E, and trace the dependence
of the various constants on the “modulus of convexity” of the domain through the
ratio of the radius of the smallest ball containing E and the largest ball contained in
E. The limiting case p =N of the Sobolev inequality builds of the limiting
inequalities for the Riesz potentials, and is preceded by an introduction to Morrey
spaces and their connection to BMO.

The characterization of the compact subsets of L”(E) (Chapter 6) is used to
prove Reillich’s Theorem on compact Sobolev inequalities.

We introduce the notion of trace of function in W'#(RY x R*) on the hyper-
plane xy .| = 0. Through a partition of unity and a local covering, this provides the
notion of trace of functions in W'?(E) on the boundary JE, provided such a
boundary is sufficiently smooth. Sharp inequalities relating functions in W'¥(E)
with the integrability and regularity of their traces on JE are established in terms of
fractional Sobolev spaces. Such inequalities are first established for E being a
half-space and JE an hyperplane, and then extended to general domains E with
sufficiently smooth boundary OE. In the Complements we characterize functions f
defined and integrable on JE as traces on JE of functions in some Sobolev spaces
W'?(E). The relation between p and the order of integrability of f on JE is shown
to be sharp. For special geometries, such as a ball, the inequality relating the
integral of the traces and the Sobolev norm can be made explicit. This is indicated
in the Complements.

The last part of the chapter contains a newly established multiplicative Sobolev
embedding for functions in W'#(E) that do not necessarily vanish on 9E. The open
set E is required to be convex. Its value is in its applicability to the asymptotic
behavior of solutions to Neumann problems related to parabolic partial differential
equations.
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