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Preface

During the last two decades, much progress has been made in the application of nonlinear
differential geometric control theory, first to robotic manipulators and then to autonomous
vehicles. In fact, robot control is simply a metaphor for nonlinear control. The ability to trans-
form complex nonlinear systems sequentially to simpler prototypes, which can then be con-
trolled by the application of Lyapunov’s second method, has led to the develdpment of some
novel techniques for controlling both robot manipulators and autonomous vehicles without the
need for approximations. More recently, a synergy of the technique of feedback linearization
with classical Lyapunov stability theory has led to the development of a systematic adaptive
backstepping design of nonlinear control laws for systems with unknown constant parame-
ters, Another offspring of the Lyapunov-based controllers is a family of controllers popularly
known as sliding mode controls. Currently, sliding mode controls have evolved into second-
and higher-order implementations, which are being applied extensively to robotic systems.
Some years ago, the author embarked on a comprehensive programme of research to
bring together a number of techniques in an attempt to formulate the dynamics and solve
the control problems associated with both robot manipulators and autonomous vehicles, such
as unmanned aerial vehicles (UAVs), without making any approximations of the essentially
nonlinear dynamics. A holistic approach to the two fields have resulted in new application
ideas such as the morphing control of aerofoil sections and the decoupling of force (or flow)
and displacement control loops in such applications. A number of results of several of these
studies were also purely pedagogical in nature. Pedagogical results are best reported in the
form of new learning resources, and for this reason, the author felt that the educational out-
comes could be best communicated in a new book. In this book, the author focuses on control
and regulation methods that rely on the techniques related to the methods of feedback linear-
ization rather than the more commonly known methods that rely on Jacobian linearization.
The simplest way to stabilize the zero dynamics of a nonlinearly controlled system is to use,
when feasible, input—output feedback linearization. The need for such a book arose due to the
increasing appearance of both robot manipulators and UAVs with operating regimes involv-
ing large magnitudes of state and control variables in environments that are not generally very
noisy. The underpinning themes which serve as a foundation for both robot dynamics and
UAVs include Lagrangian dynamics, feedback linearization and Lyapunov-based methods
of both stabilization and control. In most applications, a combination of these fundamental
techniques provides a powerful tool for designing controllers for a range of application tasks
involving tracking, coordination and motion control. Clearly, the focus of these applications
is primarily on the ability to handle the nonlinearities rather than dealing with the environ-
mental disturbances and noise which are of secondary importance. This book is of an applied
nature and is about doing and designing control laws. A number of application examples
are included to facilitate the reader’s learning of the art of nonlinear control system design.

XV
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PREFACE

The book is not meant to supplant the many excellent books on nonlinear and adaptive control
but is designed to be a complementary resource. It seeks to present the methods of nonlinear
controller synthesis for both robots and UAVs in a single, unified framework.

The book is organized as follows: Chapter 1 deals with the application of the FEuler—
Lagrange method to robot manipulators. Special consideration is given to rapidly determining
the equations of motion of various classes of manipulators. Thus, the manipulators are classi-
fied as parallel and serial, as Cartesian and spherical and as planar, rotating planar and spatial,
and the methods of determining the equations of motion are discussed under these categories.
The definition of planar manipulators is generalized so that a wider class of manipulators can
be included in this category. The methods of deriving the dynamics of the manipulators can
be used as templates to derive the dynamics of any manipulator. This approach is unique to
this book. Chapter 2 focuses on the application of the Lagrangian method to UAVs via the
method of quasi-coordinates. It is worth remembering that the use of the Lagrangian method
for deriving the equations of motion of a UAV is not the norm amongst flight dynamicists.
Moreover, the chapter introduces the velocity axes, as the synthesis of the flight controller
in these axes is a relatively easy task. The concept of feedback linearization is introduced
in Chapter 3, while the classical methods of phase plane analysis of the stability of nonlin-
ear systems and their features are discussed in Chapter 4 in the context of Lyapunov’s first
method. Chapter 5 presents an overview of the methods of robot and UAV control. Chapter 6
is dedicated to introducing the concepts of stability, and Chapter 7 is exclusively about
Lyapunov stability with an enunciation of Lyapunov’s second method. The methodology of
computed torque control is the subject of Chapter 8, and sliding mode controls are introduced
in Chapter 9. Chapter 10 discusses parameter identification, including recursive egression,
while adaptive and model predictive controller designs are introduced in Chapter 11. In a
sense, linear optimal control, a particular instance of the Lyapunov design of controllers, is
also covered in the section on model predictive control, albeit briefly, Chapter 12 is exclusively
devoted to the Lyapunov design of controllers by backstepping. Chapter 13 covers the applica-
tion of feedback linearization in the task space to achieve decoupling of the position and force
control loops, and Chapter 14 is devoted to the applications of nonlinear systems theory to the
synthesis of flight controllers for UAVs.

It is the author’s belief that the book will not be just another text on nonlinear control but
serve as a unique resource to both the robotics and UAV research communities in the years to
come and as a springboard for new and advanced projects across the globe.

First and foremost, I thank Jonathan Plant, without his active support, this project would
not have been successful. I also thank my colleagues and present and former students at the
School of Engineering and Material Science at Queen Mary University of London for their
assistance in this endeavour. In particular, I thank Professor Vassili Toropov for his support
and encouragement.

I thank my wife Sudha for her love, understanding and patience. Her encouragement and
support provided the motivation to complete the project. I also thank our children Lullu, Satvi
and Abhinayv for their understanding during the course of this project.

Ranjan Vepa
London, United Kingdom
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Tel: 508-647-7000
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CHAPTER ONE

Lagrangian methods and
robot dynamics

Introduction

The basis of the Newtonian approach to dynamics is the Newtonian viewpoint, that motion
is induced by the action of forces acting on particles. This viewpoint led Sir Isaac Newton to
formulate his celebrated laws of motion, In the late 1700s and early 1800s, a different view
of dynamic motion began to emerge. According to this view, particles do not follow trajecto-
ries because they are acted upon by external forces, as Newton proposed. Instead, amongst
all possible trajectories between two points, they choose the one which minimizes a specific
time integral of the difference between the kinetic and the potential energies called the action.
Newton’s laws are then obtained as a consequence of this principle, by the application of varia-
tional principles in minimizing the action integral. Also, as a consequence of the minimization
of the action integral, the total potential and kinetic energies of systems are conserved in the
absence of any dissipative forces or forces that cannot be derived from a potential function.
The alternate view of particle motion then led to a newer approach to the formulation and
analysis of the dynamics of motion. It was no longer required to isolate each and every particle
or body and forces acting on them, within a system of particles or bodies. The system of par-
ticles could be treated in a holistic manner without having to identify the forces of interaction
between the particles or bodies.

The variational approach seeks to derive the equations of motion for a system of particles
in the presence of a potential force field as a solution to a minimization problem. The inde-
pendent variable in the problem will clearly be time, and the dependent functions will be the
three-dimensional (3D) positions of each particle. The aim is to find a function L such that the
paths of the particles between times 7, and r, extremize the integral:

5]
- J’L(x,y.z.x,y.z;p)df. (1.1

n

The integral 7 will be referred to as the action of the system and the function L as the
Lagrangian. In fact, we can show that when the Lagrangian L is defined as

L=T—V=%mv3—V(x.v.z;t). (1.2)



Manipulator
kinematics: The
Denavit and
Hartenberg (DH)
parameters

NONLINEAR CONTROL OF ROBOTS AND UNMANNED AERIAL VEHICLES: AN INTEGRATED APPROACH

the equations of motion are given by the Euler-Lagrange equations which are obtained by
setting the variation of the Lagrangian 8L to zero. Thus, we set

BT iy g Ol sy W O P W 0, (13)
Ox oy 6z ox oy 0z

However, by expressing 8L as

5L = aL—d(Wi] e @-d(a’f] 52 =0, (1.4)
ox dt\ ox ov dt\oy))” 0z dr\ 0z,

and assuming that the variations 8x, 8y and &z can be varied r without placing any constraints
on them, it follows that

TEAI

with ¢, =x, ¢, = y and ¢, = z. These are the celebrated Euler—Lagrange equations which result
in Newton's second laws of motion when L =T — V.

Our focus in this chapter is the application of Lagrangian dynamics, not to particles in
motion but to kinematic mechanisms in general, and robot manipulators in particular, To this
end, a brief review of the kinematics of robot manipulators is essential.

11 Constraining kinematic chains: Manipulators

The primary element of a mechanical system is a link. A link is a rigid body that possesses at
least two nodes that are points for attachment to other links. A joint is a connection between
two or more links at specific locations known as their nodes, which allows some motion. or
potential motion, between the connected links. A kinematic chain is defined as an assem-
blage of links and joints, interconnected in a way to provide a controlled output motion in
response to a specified input motion. A mechanism is defined as a kinematic chain in which
at least one link has been ‘grounded’, or attached, to a frame of reference which itself may be
stationary or in motion. A robot manipulator is a controlled mechanism, consisting of mul-
tiple segments of kinematic chains, that performs tasks by interacting with its environment.
Joints are also known as kinematic pairs and can be classified as a lower pair to describe
joints with surface contact while the term higher pair is used to describe joints with a point
or line contact. Of the six possible lower pairs, the revolute and the prismatic pairs are the
only lower pairs usable in a planar mechanism. The screw, cylindrical, spherical and flat
lower pairs are all combinations of the revolute and/or prismatic pairs and are used in spatial
(three-dimensional) mechanisms.

A primary problem related to the kinematics of manipulators is the forward kinematics
problem, which refers to the determination of the position and orientation of the end effec-
tor, given the values for the joint variables of the robot. In the robotics community, a sys-
tematic procedure for achieving this in terms of four standardized parameters of a link,
namely the joint angle, the link length, the link offset and the link twist, is adopted. This
convention is known as the Denavit and Hartenberg convention, and the parameters are
known as the Denavit and Hartenberg (DH) parameters. The complete systematic method
of defining the DH parameters will not be discussed here. The interested reader is referred
to texts such as Vepa [1], where the application of the DH convention to robot manipulators
is discussed in some detail.



