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Preface

The theory of games is a part of the rich mathematical legacy left by
John von Neumann, one of the outstanding mathematicians of our era.
Although others—notably Emil Borel—preceded him in formulating
a theory of games, it was von Neumann who with the publication in
1927 of a proof of the minimax theorem for finite games laid the found?nZ
tion for the theory of games as it is known today. Von Ne ’s
work culminated in a book written in collaboration with Oskar Morgen-
stern entitled Theory of Games and Economic Behavior published in 1944.

At about the same time, statistical theory was being given an in-
creasingly rigorous mathematical foundation in a 3eries of papers by
J. Neyman and Egon Pearson. Statistical theory until that time, as
developed by Karl Pearson, R. A. Fisher, and others had lacked the
precise mathematical formulation, supplied by Neyman and Pearson,
that allows the delicate foundational questions involved to be treated
rigorously.

Apparently it was Abraham Wald who first appreciated the connec-
tions between the theory of games and the statistical theory of Neyman
and Pearson, and who recognized the advantages of basing statistical
theory on the theory of games. Wald’s theory of statistical decisions,
as it is called, generalizes and simplifies the Neyman-Pearson theory by
unifying, that is, by treating problems considered as distinct in the
Neyman-Pearson theory as special cases of the decision theory problem.

v
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In the 1940’s, Wald produced a prodigious amount of research that
resulted in the publication of his book Statistical Decision Functions
in 1950, the year of his tragic death in an airplane accident.

1t is our objective to present the elements of Wald’s decision theory
and an investigation of the extent to which problems of mathematical
statistics may be treated successfully by this approach. The main
viewpoint is developed in the first two chapters and culminates in a
rather general complete class theorem (Theorem 2.10.3). The remaining
five chapters desl with statistical topics. No separate chapter on estima-
tion is included since estimation is discussed as examples for general
dedision problems. It was originally intended that only those parts of
statistical theory that could be justified from a decision-theoretic view-"
point would be included. Mainly, this entails the omission of those
topics whose mathematical justification is given by large sample theory,
such as maximum likelihood estimates, minimum x? methods, and
likelihood ratio tests. However, one excepticn is made. Although the
theory of confidence sets as treated does not allow a decision-theoretic
justification, it was felt that this topic “belongs” in any discourse on
statistics wherein tests of hypotheses are treated. For purposes of com-
parison, the decision-theoretic notion of a set estimate is included in
the exercises. - '

This book is intended for first-year graduate students in mathematics.
It has been used in mimeographed form at . UCLA in a two-semester or
" three-quarter course attended mainly by mathematicians, bio-statisti-
cians, and engineers. I have generally finished the first four chapters in
the first semester, deleting perhaps Sections 1.4 and 3.7, but I have
never succeeded in completing the last three chapters in the second
semester.

There are four suggested prerequisites.
. (1) The main prerequisite is a good undergraduate course in proba-

bility. Ideally, this course should pay a little more attention to condi-
tional expectation than the usual course. In particular, the formula
E(E(X|Y)) = E(X) should be stressed. Although the abstract ap-
proach to probability theory through measure theory is not used (exeept
in Section 3.7, which may be omitted), it is assumed that the reader is
acquainted-with the notions of a o-field of sets (as the natural domain
of definition gf a probability) and of a set of probability zero.

(2) An undergraduate course in analysis on Euclidean spaces is
strongly recommended. It is assumed that the reader knows the con-
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cepts of continuity, uniform continuity, open and closed sets, the
- Riemann integral, and so forth. ) x
(3) An introductory undergraduate course in statistics is highly
desirable as background material. Although the usual notions of test,.
power function, and so on, are defined as they arise, the discussion and
iflustration are rather abstract.
(4) A course in the algebra of matrices would be helpful to the student.

Rudimentary notes leading to this book have been in existence for
about six years. Each succeeding generation of students has improved
the quality of the text and removed errors overlooked by their prede-
cessors. Without the criticism and interest of these students, too
numerous to mention individually, this book would not have been
written. Early versions of the notes benefitted from comments by Jack
Kiefer and Herbert Robbins. The notes were used by Milton Sobel for a
course at the University of Minnesota; his criticisms and those of his
students were very useful. Further improvements followed when Paul
Hoel used the notes in a course at UCLA. Finally, Gus Haggstrom gave
the galleys a critical reading and caught several errors that eluded all
previous readers. To all these, I express my deep appreciation.

THomas S. FERGuUsON
Berkeley, California -
February, 1967
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CHAPTER 1

Game Theory and Decision Theory

1.1 Basic Elements

The elements of decision theory are similar to those of the theory of
games. In particular, decision theory may be considered as the theory
of a two-person game, in which nature takes the role of one of the players.
The so-called normal form of a zero-sum two-person game, henceforth
to be referred to as a game, consists of three basic elements:

1. A nonempty set, ©, of possible states of nature, sometimes re-
ferred to as the parameter space. »

2. A nonempty set, @, of actions available to the statistician.

3. A loss function, L(6, a), a real-valued function defined on ® X Q.

A game in the mathematical sense is just such a triplet (0, @, L),
and any such triplet defines a game, which is interpreted as follows.
* Nature chooses a point 8 in ©, and the statistician, without being in-
formed of the choice nature has made, chooses an action a in G. As a
consequence of these two choices, the statistician loses an amount
L(8, a). [The function L(8, a) may take negative values. A negative
loss may be interpreted as a gain, but throughout this;book L(6, a)
represents the loss to the statistician if he takes action a when 6 is the
““true state of nature’’.] Simple though this definition may be, its scope
is quite broad, as the following examples illustrate. :
: 1



2 . 1 Game Theory and Decision Theory

ExampLE 1. Opp or EvEN. Two contestants simultaneously put up
either one or two fingers. One of the players, call him player I, wins if
the sum of the digits showing is odd, and the other player, player II,
wins if the sum of the digits showing is even. The winner in all cases
receives in dollars the sum of the digits showing, this being paid to him
by the loser. ;
. To create a triplet (®, @, L) out of this game we give player I the
label “nature” and player II the label “statistician”. Each of these
players has two possible choices, so that ® = {1, 2} = @, in which “1”
and “2” stand for the decisions to put up one and two fingers, respec-
tively. The loss function is given by Table 1.1. Thus L(1, 1) = —2,

Table 1.1
a 1 2
(]
1 -2 3
2 3 | —4
L (6, a)

L(1,2) =3,L(2,1) = 3,and L(2,2) = —4. It is quite clear that this
is a game in the sense described in the first paragraph. This example is
discussed later in Section 1.7, in which it is shown that one of the players
has a distinct advantage over the other. Can you tell which one it 1s'7
Which player would you rather be?

ExaMmpLE 2. Tic-Tac-Tog, Cugss. In the game (0, @, L) an element
of the space ® or @ is sometimes referred to as a strafegy. In some games
strategies are built on a more elementary concept, that of a “move’.
‘Many parlor . games illustrate this feature; for example, the games
tic-tac-toe, chess, checkers, Battleship, Nim, Go, and so forth. A move
is an action made by a specified player at a specified time during the
game. The rules determine at each move the player whose turn it is
to move and the choices of move available to that player at that time.
For such a game a strategy is a rule that specifies for a given player the
exact move he is to make each time it is his turn to move, for all possible
histories of the game. The game of tic-tac-toe has at most nine moves,
one player making five of them, the other making four. A player’~
; :
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strategy must tell him exactly what move to make in each possible
position that may oceur in the game. Because the number of possible
games of tic-tac-toe is rather small (less than 9!), it is possible to
write down an optimal strategy for each player. In this case each player
has a strategy that guarantees its user at least a tie, no matter what his
opponent does. Such strategies are called optimal strategies. Naturally,
in the game of chess it is physically impossible to describe “all possible
histories’’, for there are too many possible games of chess and many
more strategies, in fact, than there are atoms in our solar system. We
can write down strategies for the game of chess, but none so far con-
structed has much of a chance of beating the average amateur. When
the two players have written down their strategies, they may be given
to a referee who may play through the game and determine the winner.
In the triplet (®, @, L), which describes either tic-tac-toe or chess, the
spaces © and @ are the sets of all strategies for the two players, and the
loss function L(8, a) may be +1 if the strategy 6 beats the strategy a,
0 for a draw, and —1 if a beats 6.

ExamPLE 3. A GAME wWiTH BLUFFING. Another feature of many games,
and one that is characteristic of card games, is the notion of a chance
move. The dealing or drawing of cards, the rolling of dice, the spinning
of a roulette wheel, and so on, are examples of chance moves. In the
theory of games it is assumed that both players are aware of the prob-
abilities of the various outcomes resulting from a chance move. Some-
times, as in card games, one player may be informed of the actual
outcome of a chance move, whereas the other player is not. This
leads to the possibility of “bluffing”. The following example is a loose
description of a situation which sometimes occurs in the game of stud
poker. .

Two players each put an “ante’” of a units into a pot (¢ > 0). Player
I then draws a card from a deck, which gives him a winning or a losing
card. Both players are aware of the probability P that the card drawn
is a winning card (0 < P < 1). Player I then may bet b units (b > 0) by
putting b units into the pot or he may check. If player I checks, he wins
the pot if he has a winning card and loses the pot if he has a losing card.
If player I bets, player II may call and put b units in the pot or he may
fold. If player II folds, player I wins the pot whatever card he has drawn.
If player II calls, player I wins the pot if he has a winning card and loses
it otherwise. ‘ ,

If I receives a winning card, it is clear that he should bet: if he checks,
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he automatically receives total winnings of a units, whereas if he bets,
he will receive at least @ units and possibly more. For the purposes of
our discussion we assume that the rules of the game enforce this con-
dition: that if I receives a winning card, he must bet. This will eliminate
some obviously poor strategies from player I's strategy set. With this
restriction, player I has two possible strategies: (a) the bluff strategy—bet
with a wnmmg card or a losing card; and (b) the honest strategy—bet with
a winning card, check with a losmg card. The two strategies for player
IT are (a) the call strategy—if player I bets, call; and (b) the fold strategy—
_if player I bets, fold. Given a strategy for each player in a game with
chance moves, a referee can play the game through as before, playing
“each chance move with the probability distribution specified, and de-
termining who has won and by how much. The actual payoff in such
games is thus a random quantity determined by the chance moves. In
writing down a loss function, we replace these random quantities by
their expected values in order to obtain-a game as defined. (Further
discussion of this may- be found in Sections 1.3 and 1.4.) Table 1.2

Table 1.2
11 Call Fold
I

Bluf | @P—1)(a+b). a

Honest | 2P —-1)a+Pb | 2P —1a

shows player I’s expected winnings and player II’s expected losses. For
example, if I'uses the honest strategy and I uses the call strategy, player
I’s loss will be (e + b) with probability P (I receives a winning card)
and —a with probability (1 — P) (I receives a losing card) The ex-
pected loss is

(a +b)P —a(l — P) = (2P — 1)a + Pb,

as found in the table. If player I is given the label “nature” and player
IT the label “statistician,” the triplet (®, @, L), in which ® = (bluff,
honest), @ = (call, fold), and L is given by Table 1.2, defines a game
that contains the main aspects of the bluffing game already described.
This game is considered in Exercises 1.7.4 and 5.2.8.
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1.2 A Comparison of Game Theory and Decision Theory

There are certain differences between game theory and decision theory
that arise from the philosophical interpretation of the elements ©, @,
and L. The main differences are these.

1. In a two-person game the two players are trying simultaneously
to maximize their winnings (or to minimize their losses), whereas in
decision theory nature chooses a state without this view in mind. This
difference plays a role mainly in the interpretation of what is considered
to be a good decision for the statistician and results in presenting him
with a broader dilemma and a correspondingly wider class of what might
be called ‘“‘reasonable” decision rules. This is natural, for one can de-
pend on an intelligent opponent to behave “rationally”, that is to say,
in a way profitable to him. However, a criterion of “rational”’ behavior
for nature may not exist or, if it does, the statistician may not have
knowledge of it. We do not assume that nature wins the amount L (8, a)
when 6 and a are the points chosen by the players. An example will make
this clear. Consider the game (0, @, L) in which ® = {6, 6;} and @ =
{a1, a2} and in which the loss function L is given by Table 1.3. In game

Table 1.3
@ az
0 4 1
[ -3 0.
L6, a)

theory, in which the player ¢hoosing a point from © is assumed to be
intelligent and his winnings in the game are given by the function L,
the only “rational” choice for him is 6. No matter what his opponent
does, he will gain more if he chooses #; than if he chooses 6. Thus it is
clear that the statistician should choose action as, instead of ai, for he
will lose only one instead of four. Again, this ‘is the only reasonable
thing for him to do. Now, suppose that the function L does not reflect
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the winnings of nature or that nature chooses a state without any clear
objective in mind. Then we can no longer state categorically that the
statistician should choose action a,. If nature happens to choose 8, the
statistician will prefer to take action-a;. This basic conceptual difference
between game theory and decision theory is reflected in the difference
between the theorems we have called fundamental for game theory and
fundamental for decision theory (Sec. 2.2).

‘2. It is assumed that nature chooses the “true state” once and for
all and that the statistician has at his disposal the possibility of gathering
information on this choice by sampling or by performing an experiment.
This difference between game theory and decision theory is more ap-
parent than real, for one can easily imagine a game between two in-
telligent adversaries in which one of the players has an advall:&age' given
to him by the rules of the game by which he can get some information
on the choice his opponent has made before he himself has to make a
decision. It turns out (Sec. 1.3) that the over-all problem which allows
the statistician to gain information by sampling may simply be viewed
as a more complex game. However, all statistical games have this char-
acteristic feature, and it is the exploitation of the structure which such
gathering of information gives to a game that distinguishes decision
theory from game theory proper.

For an entertaining introduction to finite games the delightful book
The Compleat Strategyst by the late J. D. Williams (1954) is highly
recommended. The more serious student should also consult the lucid
accounts of game theory found in McKinsey (1952), Karlin (1959),
and Luce and Raiffa (1957). An elementary text by Chernoff and
Moses (1959) provides a good introduction to the main concepts of
decision theory. The important book by Blackwell and Girshick (1954),
which is a more advanced text, is recommended as collateral reading
for this study.

1.3 Decision Function; Risk Function

To give a mathematical structure to this process of information gather-
ing, we suppose that the statistician before making a decision is allowed
to look at the observed value of a random variable or vector, X, whose
distribution depends on the true state of nature, 8. Throughout most of
this book the sample space, denoted by ¥, is taken to be (a Borel subset of)
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a finite dimensiqnal Euclidean space, and the probability distributions
of X are supposed to be defined on the Borel subsets, ® of ¥. Thus for
each 0 € O there is a probability measure Py defined on ®, and a cor-
responding cumulative distribution function Fx(z | 8), which represents
the distribution of X when 6 is the true value of the parameter. [If X
is an n-dimensional vector, it is best to consider X as a notation for
(X4, +++, X,) and Fx(z'| 0) as a notation for the multivariate cumula-
tive distribution function Fyx,,... x,(z1, ***, . ] 6).]

A statistical decision problem or a statistical game is a game (0, @, L)
coupled with an experiment involving a random observable X whose
distribution P, depends on the state 8 € © chosen by nature.

On the basis of the outcome of the experiment X = z (z is. the ob-
served value of X), the statistician chooses an action d(z) € @. Such
a function d, which maps the sample space % into @, is an elementary
strategy for the statistician in this situation. The loss is now the random
quantity L (8, d(X)). The expected value of L(6, d(X)) when 6 is the
true state of nature is called the risk function

R(6,d) = E,L(6, d(X)) (1.1)

and represents the average loss to the statistician when the true state
of nature is 8 and the statistician uses the function d. Note that for some
choices of the function d and some values of the parameter 6 the ex-
pected wvalue in (1.1) may be 4« or, worse, it may not even exist. As
the following definition indicates, we do not bother ourselves about such
functions.

Definition 1. Any function d(z) that maps the sample space X into
@ is called a nonrandomized decision rule or a nonrandomized decision
SJunction, provided the risk function R (4, d) exists and is finite for all
6 € ©. The class of all nonrandomized decision rules is denoted by D.

* Unfortunately, the class D is not well defined unless we specify

the sense in which the expectation in (1.1) is to be understood. The
reader may take this expectation to be the Lebesgue integral,

R(6,d) = EL(6, d(X)) = fL(o, d(z)) dPy(z).
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With such an understanding, D consists of those functions d for which
L(6, d(x)) is for each 8 € O a Lebesgue integrable funetion of z. In par-
ticular, D contains all simple functions. (A function d from % to @ is
called simple if there is a finite partition of ¥ into measurable subsets
By, +++, B, € ®, and a finite subset {a;, * * +, an} of @ such that forz € B;,
d(z) = a;for 7z = 1, «++, m.) On the other hand, the expectation in
(1.1) may be taken as the Riemann or the Riemann-Stieltjes integral,

R(6,d) = BL(6, d(X)) = fL(o, d(z)) dFx(z | 6).

In that case D would contain only functions d for which L(8, d(z)) is
for each 6§ € © continuous on a set of probability one under Fx(z | 6).
For the purposes of understanding what follows, it is not too important
which of the various definitions is given to the expectation in (1.1). In
most of the proofs of the theorems given later we use only certain lin-
earity [E(aX + Y) = aEX + EY] and ordering (X > 0= EX > 0)
properties of the expectation; such proofs are equally valid for Lebesgue
and Riemann integrals. Therefore we let the definition of the expecta-
tion be arbitrary (unless otherwise stated) and assume that the class D
of decision rules is well defined.

ExampLE 1. The game of “odd or even” mentioned in Sec. 1.1 may
be extended to a statistical decision problem. Suppose that before the
game is played the player called “the statistician’ is allowed to ask the
player called “nature’” how many fingers he intends to put up and that
nature must answer truthfully with probability 3/4 (hence untruth-
fully with probability 1/4). The statistician therefore observes a random
variable X (the answer nature gives) taking the values 1 or 2. If 8 = 1
is the true state of nature, the probability that X = 1 is 3/4; that is,
Pi{X = 1} = 3/4. Similarly, P,{X = 1} = 1/4. There are exactly four
possible functions from ¥ = {1, 2} into @ = {1, 2} These are the four
decision rules:

di(1) =1, di(2) =1;
d:(1) =1, do(2) = 2
(1) =2, &@) =1;
di(1) = 2, du(2) = 2.
~ Rules d; and d, ignore the value of X. Rule d; reflects the belief of the



