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CHAPTER 1
General Facts About Probability
Distributions

§1. Probability Spaces

1. Measurable Spaces

Let X be an arbitrary set. When we consider elements xe X and sets 4 < X,
we call X a space.

We use standard notation for set operations: U for union, n for inter-
section (also called the product and sometimes indicated by a dot), A° for
the complement of A, 4,\A; = A4, - A5 for the difference of 4; and 4,,
Ayo A; = (A \A,) U (4,\4,) for the symmetric difference, & for the
empty set.

Collections of Sets. When looking at collections of sets, we will use the
following terminology.

A collection ® of subsets of the space X is called a semi-ring when for any
sets A, A, in ® their intersection is also in ® and when 4, < A, then A4 can be
represented as a finite union of disjoint sets 4,, ..., 4,in ®, 4 = | J] 4,.
We also require that &J € ® and the space X itself be represented as a count-
able union of disjoint sets 4y, ...€ ®: X = | J? 4,.

A semi-ring ® is a ring if for any two sets 4, A,, it also contains their
union.

Let ® be an arbitrary semi-ring. Then the collection of all sets 4 € X
which can be represented as a finite union of intersections of sets in ® is a ring.
If the ring ® also includes the set X, then it is called an algebra.

An algebra is invariant with respect to the operations union, intersection
and complement, taken a finite number of times. The collection of sets is
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called a o-algebra if this invariance holds when the operations are taken a
countable number of times. :

The intersection of an arbitrary number of g-algebras is again a ¢-algebra.
For any collection of sets ®, there is a o-algebra .« containing ®. The minimal
such g-algebra is called the g-algebra generated by the collection ®.

ExampLE (Union of o-algebras). Let o = of; v o, be the minimal o-
algebra containing both &, and &, . It is generated by the semi-ring ® =
o | - o, of sets of the form A = A, - 4,, A;€ ;.

We call a g-algebra of separable if it is generated by some countable
collection of sets ®. Notice that in the case when ® is a countable collection,
the algebra it generates is countable, consisting of all sets which can be derived
from ® by finite intersections, unions, and complements.

When we speak of X as a measurable space we will mean that it is equipped
with a particular g-algebra of of sets A = X. We indicate a measurable space
by the pair (X, «). In the case where X is a topological space, then frequently
the o-algebra of is generated by a complete neighborhood system (basis)
of X. Usually we will deal with the Borel o-algebra, generated by all open
(closed) sets, or the Baire g-algebra, which is the o-algebra generated by
inverse images of open (closed) sets in R under continuous mappings
e: X - R

If X is a metric space with metric p, and if F € X is any closed set, then
the function ¢(x) = inf,. ¢ (x, x'), x € X, is continuous and F is the pre-
image of {0} under ¢, F = {x: ¢(x) = 0}; hence each Borel set is Baire. This
is also true for compact X with countable basis: such a space is metrizable.

ExampLE. The system of half-open intervals (x’, x") on the real line X = R
forms a semi-ring and the g-algebra it generates is the collection of all Borel
sets. The same is true of the countable semi-ring of half-open intervals with
rational endpoints.

ExampLE (The semi-ring generated by closed sets). The collection ® of all
sets of the form 4 = G,\G,, where G, and G, are closed sets, is a semi-ring:
_for any-A’, A"e®, A'n A" = G| -G{\(G; v G})e®; furthermore if
A" € A',wecanassume G, € G; € G| < Gjandwehave A\4" = 4, U 4,
where A; = G{\G] and 4, = G\ G} are disjoint.

ExampLE (The semi-ring of Baire sets). Let F be a closed Baire set in X
.which is the inverse image of some closed set B on the real line Y, F =
{@ € B}. If one takes any continuous function ¥ on Y, mapping the closed
set B to 0 and strictly positive outside B (for instance, y(y) could be the
distance from the point y € Y to thé set B = Y), then the composition o ¢ is
continuous on X and the closed Baire set F is precisely thenull set {{s o ¢ = 0}.
The system ® of-all closed Baire sets F which are null sets of continuous
functions ¢ on the réal line contains the intersection F, n F, and union
F{UF, for any F,, F, € ®. For example, if F; = {¢; = 0} then F, UF, =
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{@i@; = 0} and Fy n F, = {|@y| + |@,| = 0}. The collection of all sets A
which can be represented as a difference F;\F, of two sets F, < F, in &
is a semi-ring which generates the entire o-algebra of Baire sets in the space X.

Standard Borel a-algebras. Let (X, <) be a measurable space; we call
2/ a standard Borel g-algebra if it is isomorphic to a Borel g-algebra 2 on
some Borel subset Y of a complete separable metric space. (Two g-algebras
o and % are Borel isomorphicif there is a one-to-one mapping ¢: X — Y and
o consistsofall A = X oftheform A = {x: ¢(x) € B}, B € #.) The following
holds: a standard Borel a-algebra is isomorphic to a Borel c-algebra on some
compact metric space.

Products of Spaces. The product of measurable spaces (X,, &) and
(X,, &,) is the space X = X, x X, of all pairs (x,, x,), x; € X;; with o-
algebra .o/ generated by the semi-ring ® = o/, x &/, of sets A € X of the
form A = A, x A,, A; € s;; more precisely, A is the set of all pairs (x,, x,),
x; € A;.

We define a finite product X = [ ],y X, of measurable spaces (X,, #,) in
the same way. Here T is a finite index set and X is the set of elements x =
{x,,te T}, each a tuple of “coordinates” x, € X, with g-algebra .o/ generated
by the semi-ring & = [[;cr, of sets A = [],.+ 4., A, € o,. Each such 4
is a set of elements x with corresponding coordinates x, € 4,.

Let T be an arbitrary index set and (X,, #,),t € T, be an arbitrary family of
measurable spaces. We define the product X = [ ], X, to be the space of
elements x = {x,, t € T}, given by means of “coordinates” x, € X,, with
g-algebra o/ generated by the semi-ring ® = ]_l,e,-d of cylinder sets. A

cylinder set A = X is of the form

A = {x: x5 € Ag}, (1.1)

where S is a finite subset of T. Here the symbol xg indicates the point in the
space Xg = [],.s X, whose S-coordinates are the same as those of x and
As © Xgisasetin the semi-ring [ |,.s o, We call (X, ) a coordinate space.

If the X, are topological spaces, then the cylinder sets (1.1) with Ag of the
form Ag = []s 4,, A, open in X, form a basis for the topological space
X =[] X, this is the Tychonov product. A commonly used example is the _
coordinate space X = E”; here each X, is some fixed space E and 7, is some
fixed g-algebra #. The elements x = {x(1),t € T}, of this space are all possible
functions on the set T with values in the *“ phase space” E.

2. Distributions and Measures

A non-negative function P = P(A4) defined on the semi-ring ® of sets A in
the space X is a distribution if P(¢) = 0 and

P(4) = Z P(A,), whenever A U A, a countable union of disjoint
sets Ay, lnGi . (1.2)
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In case (1.2) is true only for a finite number of sets, the function P is usually
called a weak distribution. Every weak distribution P can be uniquely ex-
tended from the semi-ring ® to the ring of all sets A < X which are a finite
union of disjoint sets 4,, ..., 4, € ®; the extension is done using (1.2), which
gives the finite additivity. A (weak) distribution P on a semi-ring & is called
bounded if the function P(A) is bounded. We consider only bounded distribu-
tion. A weak distribution P on a ring ® is a distribution iff it is continuous
in the following sense: for every monotone sequence of sets A, 2 4, 2
whose intersection (), 4, = &, lim,_, P(4,) = 0

Each distribution extends uniquely to a measure, i.e., a countably additive
function P on the g-algebra of generated by the original semi-ring ®. The
extension is defined by

P(A) = inf ; P(A4), (1.3)

where the inf is taken over all sets 4,, 4,, ... e ® whose union contains the
set A.

A measure P on a topological space X is Borel (Baxre) if it is defined on the
Borel (Baire) sets.

For any set A < X, define P(4) by means of (1.3); for 4, A; € X, the
“distance” p(4,, A,) = P(A, = A,) indicates to what extent the sets 4,, 4,
differ from one another. Let P be a measure on the c-algebra /. A set
A < X is called measurable if 3 some A’ € of suchthat P(4- 4A") =0.If®isa
ring generating &, then a set 4 is measurable iff it can be approximated by
sets A, € ® in the sense that

P(A-A,) <se, for any ¢ > 0. (1.4)

The collection of all measurable sets is a g-algebra and (1.3) defines the mea-
sure P on it. This extension of the original measure P is complete in the sense
that any subset A’ of a set A of measure zero is measurable and P(4") = 0

All of the above observations apply to unbounded distributions and mea-
sures with minor restrictions; in discussing unbounded measures it is im-
portan\t to stress that X must be o-finite, i.e., representable as a countable
union of sets of finite measure.

Let «,, o/, be two collections of sets having the property that for each
A,e o, and "4, € o,, one can find 4] € o/, and A} e o, differing from
A,, A, by sets of measure 0, P(4, > A}) = P(4, - A,) = 0. We indicate this
situation by the equality

| = o, (mod 0).

Tight Measures. A Borel measure P on a topological space X is regular if
for every measurable set A4,

P(A4) = sup P(F), (1.5)

FEA
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where the sup is taken over all closed sets F = 4. (1.5) is equivalent to |

P(4) = inf P(G), _ (1.6)

G=24

where the inf is taken over all open G containing A.

Let the measure P have the property that P(X) = supycy P(F), where the
sup is taken over compact F. Such P is said to be tight. Every measure on a
complete separable metric space is tight. For such measures (1.5) can be
restated with “compact” replacing “closed ": i.e., a regular tight measure is
Radon.

ExAMPLE Let X be the real line. Then the Borel and Baire sets coincide. The
measure P(A) of each measurable set 4 is defined by (1.3), where the inf is
taken over all disjoint half-open intervals 4, = (x;, x;] whose union corn-
tains A. At the same time each interval (x’, x"] is the intersection of a count-
able number of open intervals and (1.6) clearly holds with the inf taken over
all open sets G containing A.

Equation (1.6) is also true in any topological space X on which the Borel
and Baire sets coincide. Every set F € o/ which is the null set of a continuous
function ¢ on the real line Y is the intersection of a countable number of open
setsof the form G; = {|¢| < 0}, F = ﬂ G;. By the continuity of the measure
P, P(F) = inf P(G,). For the difference of such sets, 4 = F \F,withF, c F,,
we have P(4) = P(F,) — P(F,) = inf P(G), with the inf taken over all open
sets G of the form G = G,\F,, with F,  G,. Since sets of the form F,\F,
are a semi-ring generating .o/, we have for any P-measurable set 4, P(4) =
inf Y, P(A,), where the A, are a countable disjoint covering of 4 and each
A, = F \F. Clearly P(A) coincides with inf;- , P(G), the inf taken over
all unions G of appropriate sets.

A weak distribution P on a semi-ring ® is tight if each set 4 € ® can be
arbitrarily closely approximated in the sense (1.4) by compatct sets F, < A:
P(A\F,) < ¢ for any & > 0. Such a weak distribution is a distribution and
extends to a tight measure on the o-algebra generated by .

We will show why this is true. We assume  is the ring formed by finite
unions of sets in the original semi-ring. It is sufficient to establish that P is
continuous. If lim, P(4,) # 0 for some sequence A; 2 A, = - -, then one
can find a sequence of approximating compacts F, € A, withF; 2 F, 2 .-,
and with P(F,) = P(4,) — P(4,\F,) > 0 and whose intersection is non-
empty, & # (), Fa < [ )» An. Hence for any sequence 4, 2 4, 2 --- whose
intersection is empty, we have lim P(4,) = 0. !

Products of Measures. Let P;, P, be measures on measurable spaces
(X, &), i = 1, 2. The equation

P(A) = P:(At)Pz(Az)



6 1. General Facts About Probability Distributions

defines a distribution on the semi-ring ® = &/, x o/, (sets of the form
A=A, x A;, A;e ;) in the product space X = X, x X,. The corre-
sponding measure P = P; x P, on the g-algebra o generated by o, x o/,
is the product of the measures P, and P,.

For an arbitrary family of measure spaces (X,, .#,),t € T, with P(X,) = 1
for all but a finite number of t, we define the product measure in a similar way:
P = []ier P, on the coordinate space X = [lier X, with c-algebra
generated by the semi-ring ® = [[,.r & -of cylinder sets of the form (1.1).

Let X = [],.r X, be a coordinate space and P a distribution on the semi-
ring ® = [|; &, of cylinder sets (1.1). Then

Ps(As) = P(4), Ae® (1.7

defines the projection of the distribution P on the space X = n,E s X and
the corresponding semi-ring [ ], #/,. It satisfies the following consistency
condition: for §, < §,, the distribution Pg, is the projection of the distri-
bution o Sa2°
Let Pg, S = T, be a family of distributions parametrized by finite subsets
S < T -and satisfying the consistency conditions described above. Then
equation (1.7) defines a weak distribution P = Pron the space X = [],.r X,
and the semi-ring [ |, #,. For an arbitrary S < T, let P denote the projec-
tion of P on the space X s and semi-ring [ ], s #,. Clearly Py is a distribution
<> for any countable S = T, Py is a distribution since then equation (1.2),
will hold for countably many cylinder sets in [ [, .. ‘
.In the case of a topological space, we saw that a weak distribution Pg is
a distribution if it is tight. Suppose that the distributions P, corresponding to
-singleton sets S = {t}, are tight. Then P = Py will be tight for countable
S < T since eachsset A = [],.s 4, 4, € ,, can be approximated arbitrarily
closely by compacts of the form F = [|,.sF, = [)ies {x, € F,} for a suitable
choice of F, € X,:
A\F = L)S {x, e A,\F}, “P(ANF) < ZSPI(AI\FI)'
0 TeES" 5 i1e
In particular, if X = E”, where E is a complete separable metric space,
then for a consistent family of distributions Pg corresponding to finite § < T,
equation (1.7) gives a distribution P on cylinder sets and it can be extended to
a measure on the o-algebra generated by the semi-ring ® = [[,.r ..
Let-X = [],.r X, be an arbitrary coordinate space with measure P on the
a-algebra' of(T) generated by the semi-ring [ |, ro,. Then for each measur-
-able'4 < X, 3 some countable S = T and set A’ in the g-algebra .«/(S)
generated by the semi-ring | |,.s #/, such that 4 = 4’ (mod 0); that is, 4 and
A’ differ by a set of measure 0.

Mappings and Measures. Let (X, .2/)be a measurable space with measure
P on the g-algebra o/ and let ¢(x), x € X, be a function taking values in a
space Y. The equation

P*(B) = P{p¢€ B) (1.8)
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defines a measure P? on the g-algebra % consisting of all sets B = % whose
pre-images A = {¢ € B} belong to the g-algebra o/.

Let X be an arbnrary.space and (Y, #) a measurable space with measure
Q on the o-algebra 8. We write ¢(A) for the image of a set A < X ander the
map ¢: X — Y. When the set ¢(X) is measurable and A = {¢ € B}, then

P(4) = Q(B n ¢(X)) (1.9)

defines a measure P on the g-algebra &/?, consisting of all pre-images
A = {@ € B}, Be #; we will say that the o-algebra o/? is generated by the
Sfunction o.

A map ¢ from a measurable space (X, &) with complete measure P on the
o-algebra o/ to the measurable space (Y, &) is called measurable if for each
Be B, the pre-image A = {¢ € B} is a measurable set. When speaking of a
real measurable function ¢, we will mean a map to the real line ¥ = R with

the Borel g-algebra 2.

Let (X, o) be a topological space with tight Borel measure P. Then for
any real measurable function @, the image B = ¢(X) is a measurable set of
thebn\-,eal line (with respect to the corresponding Borel measure P?).

e will show this. A measurable function ¢ is the uniform limit of piece-
wise constant functions ¢, defined by @,(x) = yy, if X € A,,, where A, ..
are dxsjomt measurable sets in X ; one can take approximating compact sets
Fyn © Ay, whose finite unions F, = U.SNF « are such that the intersection
X, = (). F, approximates the space X to within any previously specified
e>0:

POX\X) < &

Each function ¢, on the compact set X, takes only a finite number of dif-
ferent values y,,; moreover, the pre-images {@, = Vi) = Fin N X, are
compact. It is clear that all functions ¢,(x), x € X, as well as their umform
limit @(x), are continuous on X,. Let B = ¢(X). The image B, = ¢(X)) is
compact, since ¢ is continuous, and we have

P*(B\B) = P({geB} - (peB}) < PX\X) <.

where ¢ can be chosen to be arbitrarily small. By (1.4) the set B is measurable.

A ‘measure P on a measurable space (X, A) will be called perfect if for
each measurable real function ¢ on X the image B = ¢@(X) is measurable
with respect to the Borel measure P?.

The Weak Topology on- the Space of Measures. Let X be a topological
space and .#(X) the collection of all Borel measures-P on the space X,
normalized so P(X) = 1. The weak topology on .#(X) is the topology

~ generated by neighborhoods of P e #(X) of the type

{P:l J.xfdﬁ_ J;:fdP < b}
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where ¢ > 0 and fis any bounded continuous functions on the space X. We
will say that a sequence of measures P, converges weakly to the measure P if
convergence takes place in the weak topology; in other words, P, converges
weakly to P if for any bounded continuous function f,

j FOIPdx) = f FEIP).
. X X

In the case where X is compact metric, the space .#(X) is also compact with
respect to the weak topology.

3. Probability Spaces

An arbitrary set Q, together with a o-algebra .o of subsets of Q and a positive
measure P defined on &/ and normalized so P(Q2) = 1, is a probability space.
In speaking of a probability space (€, =7, P), the elements w € Q are usually
called elementary events, the sets 4 € o7 are events, and the measure P(A4) is
the probability of event A occurring,

The concept of independence is of fundamental importance. Events
Ay, ..., A, are called independent if

P(A,n---n A,) = P(A,) - P(A,); ol (1. 10)

g-algebras &/, ..., &, < o are independent if (1.10) holds for any events
Aiedy, ..., A, ed,. ,

A measurable function ¢ = &(w), w € , on a probability space (Q, ./, P)
taking values in a measure space (X, #) is called a random variable. The
probability measure P¢ defined on the space X by P4B) = P{¢ € B}, Be 4,
is the probability distribution of the random variable ¢.

We will say that the o-algebra & is generated by a family of variables ¢
if it is generated by all possible events of the form {¢ € B}, Be #. Random
variables &,, &, with values in X will be calléd equivalent if P{, # £,} = 0,
in other words if &; and &, are equal with probability 1. All random variables
equivalent to the random variable ¢ have the same probability distribution
P

Let &,k = 1,..., n, be random variables with values in spaces (X, %#,).
Their joint probability distribution P*" "% is defined as the distribution on
the semi-ring of sets of the form B, x -+ x B,, B; € #,, in the product space
X, x --- x X, given by -

P B, x --- x B,) = P{{,€B,,...,{ €B,},

forallB,e #,,...,B,e%,.
We call tandom variables &, ..., &, independent if

Pév%n(B x ... x B,) = P*(B,)--- P"B,), Bye%,,...,B,e®A,.
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- Random Functions. Let (E, #) be a measurable space and T an arbitrary
set. The family of random variables &(z), t€ T, with values in (E, #) is a
random function on the set T with phase space (E, #). The distributions

Pgy(B, x --- x B,) = P{{(t,)€B,,.... L(t,)eB,}, S=(1,....1)

on the products E® are called the finite dimensional distributions of the
random function ¢ = &(t), t e T. Recall that each random variable &(t) =

Ew, t), we Q, is defined on the probability space (Q, 4, P); for each fixed
- weQ, the function &(w, -) = &(w, t), te T, is called a trajectory.

Let E be a compact separable metric space. For a given family of consistent
probability distributions Pg, S < T, on E one can define a probability space
and a family of random variables &(1), t € T, with finite dimensional distri-
butions Pg, S < T: for Q, take the coordinate space X = E”, and for each
t € T define &(t) = &(w, t) as a function of @ = x € X by the equation

Ew, t) = x(t), where x = {x(1),teT};

the corresponding probability measure P is defined on the g-algebra & =
(T) generated by all cylinder sets by means of the given distributions Py,
S < T, by equation (1.7).

A random function &(t), t € T, into the phase space (E, %) gives a measur-
able mapping

- x={w,1), teT (1.11)

from the probability space (Q, #/, P) to the function space X = ET with
probability distribution P* on the g-algebra «/(T).

Random funcuons into the space E are called equivalent ifforallte T, £,(t)
and &,(t) are equnvalem The finite dimensional distributions of equivalent
random functions coincide. In the class of all equivalent random functions
one usually distinguishes a suitable representative having particular prop-
erties for the trajecmry (that is, with trajectories in a particular function
space X).

Let T be a topological space; a random function £(z), t € T, into a metric
phase space E with distance function p is called stochastically continuous if
for any ¢ > 0, \

lim P{p(&(s), &0)) = &} = 0.

=1

When speaking of random variables or random functions we will, as a
rule, mean real (or complex) valued variables ¢. In this case, we let E¢
denote'the mathematical expectation of the random variable &,

Ef= Lé(w)P(dw). .

We frequently consider the spaces L?(of) = L?(Q, o/, P), p = 1, 2 of all
random variables & such that E|£|? < oo, with corresponding norm |[|£|| =
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(E|&?})!/?; when p =2 this gives the scalar product (¢, &,) = E&, - ¢,.
Convergence in the spaces LP(=/) will be called convergence in mean (p ='1)
and in mean square (p = 2).

In speaking of random variables £ € LP(sf) we will not distinguish between
equivalent random variables. In accordance with this we will not distinguish
between o-algebras which differ only by events of probability zero.

Let T be a domain in Euclidean space R? and (1), t € T, be a random func-
tion with finite second moments- E|&(f)|* < o0. In speaking of continuity,
differentiability, or integrability we will mean the existence of these prop-
erties for &(¢), te T, regarded as a function on T with values in the Hilbert
space LX(Q, o/, P).

Random Measures. Let T be a measurable space with a ring of measurable
sets ®; to each set A e ® associate a real or complex random variable n(A)
with mean zero, En(A) = 0, and finite second moment, E|#(A)|*> < co. This
defines a function on ® .with values in L*(, &, P) which we require to be
additive: for disjoint A, A, e B, n(A, U A,) = n(A;) + n(A,).

Suppose, in addition, that En(A;)n(A,) = 0 when A, and A are disjoint
and that the real-valued additive function u(A) = E|n(A)|? is a continuous
distribution on the ring ®. A random function 5(A), A € ®, having these
properties is usually called a random (or stochastic) orthogonal measure. To
characterize these, we will use the symbolic notation

CEln(dnl? = pde)

For a measurable function ¢(t), t€ T, square-integrable with respect to
the measure u(dt), a standard construction defines the stochastic integral

f @(tn(dt) e LXQ, o, P)
G :

having the property that

E f POn(dr) = 0,
T

2
E J;Q)(t)q(dt) .

J;I o) 2ucde),

and
E[ Lfm(t)n(dt)][ fra»z(t)n(dr)]' 22 L(pl(r)mu(de).

Generalized Random Functions. Let T be an open domain in d-dimensional
Euclidean space R? and C$(T) the space of infinitely differentiable functions
u = (1), te T, with compact support Supp u = T. We can regard C5(T) as
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~ the union of topological spaces C§'(Tioc);* Tioc @ COmpact subset of T, each
" having a neighborhood basis at the origin of the form {u: [[u||, < &}; here

lul? = Y, 1D*4)%  1=0,1,...,

ki<t
and
IDhui? = [ Dl at,
T
where
*u(t) . 3
D“u(l)—m, I—(tl,...,td)ER.

k=(k1o---,k4) and |k|=kl 4+ oo kg

Convergence of a sequence u, — u in the space C3(T) means that the func-
tions u, all have support Supp u, < T, for some compact T,. < T and that
u, — u in the topological space CF(Ti..).

Consider a continuous linear map from the space C3(T) into L*(Q, «#, P),
under which the functions u € C$(T) correspond to random variables
denoted by (u, &) € L€, o, P). We will call this continuous linear operator’
& = (u; &), u € CE(T), a generalized random function. For & = (u, £), we define
the operations differentiation, multiplication by a C® function, etc., as they
are usually defined for ordinary generalized functions; that is,

D*¢ = (—=1)*(D*y, &),
a-t=@-u, &) fora=a(t),teT, an infinitely differentiable function.

An example of a generalized random function is given by the operator
W, &) = fr u(t)&(t) dt, ue CP(T), where the function &(t)e LY, &, P),
t € T, is required to be integrable on every bounded domain S < T and in
particular,

I, Ol < J;l u® 1@l dt.

It is in the above sense that we will speak of .a generalized random function
henceforth.

Another example is offered by so-called “white noise” 7j(t), t € T'; this is a
generalized random function of the form

(o, 1) = _Lu(t)vi(t) P Lu(t)n(dt), ue C(T).

The first expression only makes sense when interpreted according to the
second (stochastic) integral; in which 5(dt) is the orthogonal random measure
for which E|n(dt)|? is the Lebesgue measure dt.



