International Society for Rock Mechanics

ISRM Book Series

1

Rock Engineering Risk

John A. Hudson Xia-Ting Feng

Rock Engineering Risk

John A. Hudson

Department of Earth Science and Engineering, Imperial College London, UK

Xia-Ting Feng

Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China

The photograph on the front cover is of a limestone and mudstone rock mass in South Wales, UK, as an example of the discontinuous, inhomogeneous and anisotropic nature of most rock masses.

CRC Press/Balkema is an imprint of the Taylor & Francis Group, an informa business

© 2015 Taylor & Francis Group, London, UK

Typeset by V Publishing Solutions Pvt Ltd., Chennai, India Printed and bound in Great Britain by CPI Group (UK) Ltd, Croydon, CR0 4YY

All rights reserved. No part of this publication or the information contained herein may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, by photocopying, recording or otherwise, without prior permission in writing from the publisher. Innovations reported here may not be used without the approval of the authors.

Although all care is taken to ensure integrity and the quality of this publication and the information herein, no responsibility is assumed by the publishers nor the authors for any damage to the property or persons as a result of operation or use of this publication and/or the information contained herein.

Published by: CRC Press/Balkema

P.O. Box 11320, 2301 EH Leiden, The Netherlands e-mail: Pub.NL@taylorandfrancis.com www.crcpress.com – www.taylorandfrancis.com

Library of Congress Cataloging-in-Publication Data

Hudson, J.A. (John A.), 1940-

Rock engineering risk / John A. Hudson, Department of Earth Science and Engineering, Imperial College London, UK, Xia-Ting Feng, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China.

p. cm

Includes bibliographical references and index.

ISBN 978-1-138-02701-5 (hardcover : alk. paper) — ISBN 978-1-315-73857-4 (ebook : alk. paper) 1. Rock mechanics—Risk assessment. 2. Structural failures. 1. Feng, Xia-Ting. II. Title.

TA706.H79 2015 624.1'5132-dc23

2015008976

ISBN: 978-1-138-02701-5 (Hbk) ISBN: 978-1-315-73857-4 (eBook PDF)

DISCLAIMER

No responsibility is assumed by the Authors or Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

Preface

The purpose of this book is to describe the subject of risk as it relates to the design and construction of engineering projects located on or within rock masses. Traditionally, such projects include facilities such as building foundations, dams, slopes, tunnels, caverns and mines; but, more recently, other increasingly complex rock engineering projects are being developed, constructed and operated, such as geothermal energy, radioactive waste disposal, CO₂ storage and hydraulic fracturing for shale gas. In all these projects, there are risks involved in the separate aspects of site investigation, modelling, design and construction—together with their cumulative effect on the operation of the whole project.

Our previous 2011 book, "Rock Engineering Design", published by CRC Press/Balkema (Taylor & Francis Group), was also concerned with the design of projects constructed on or in rock masses, i.e., slopes, dams, hydroelectric schemes, mines, and repositories for radioactive waste disposal. That book covered rock engineering design methodologies, associated flowcharts, the information required, technical auditing of design, a rock slope case example, an underground hydroelectric powerhouse case example, Protocol Sheets for auditing rock engineering design, and examples of the use of Protocol Sheets. This new book, "Rock Engineering Risk", covers the related and important subject of risk using the Frontispiece flowchart in which the risks are considered in terms of the uncertainties associated with 'before construction' and 'during construction' factors.

The emphasis in the book is on the physical aspects of these subjects, the rock mechanics and the rock engineering, rather than the financial aspects, although of course there are financial ramifications associated with the mitigation of the physical risks. Chapters 1–5 provide information on the subject of risk and the approaches to reducing risk, especially in the context of design and construction for underground rock engineering, although the general principles apply also to surface rock engineering. Chapters 6 and 7 contain two detailed, major case examples from China relating to long tunnels at great depth and a hydropower cavern complex. These two Chapters contain a wealth of information relating to the practical risk reduction methods described in the earlier chapters and the experiences of their application during both tunnelling and cavern construction.

Both our previously published book on 'rock engineering design' and this book on 'rock engineering risk' are outputs from the International Society for Rock Mechanics (ISRM) Commission on Design Methodology. The earlier 'rock

engineering design' book was generated when John A. Hudson was President of the ISRM (2007–2011), and this new book on 'rock engineering risk' was generated while Xia-Ting Feng was President of the ISRM (2011–2015).

We are pleased to report that this book is the first in the newly established CRC Press/Balkema ISRM Book Series.

John A. Hudson and Xia-Ting Feng, 2015

Acknowledgements

ISRM International Society for Rock Mechanics

We are especially grateful to Professor E.T. Brown of Golder Associates in Australia who originally recommended that the ISRM Design Methodology Commission should focus on 'rock engineering risk' in the 2011–2015 ISRM Presidential tenure period—following the earlier 2007–2011 research on 'rock engineering design'. The risk subject certainly required attention and we hope that now, four years later, the Commission has indeed made a worthwhile contribution through the publication of this book.

Thus, the ISRM Design Methodology Commission was active in the period 2011–2015 and the authors, as respectively Commission President and Commission Co-President, are significantly indebted to the ISRM Commission Members listed below who actively took part in discussions held in association with ISRM symposia, made many suggestions and provided reference material.

Dr Conrad Felice, Mr Erik Johansson, Prof. Frederic Pellet, Prof. Wulf Schubert, Prof. Alexandros Sofianos, Prof. Ove Stephansson, Prof. Leslie G. Tham, Dr Antonio Samaniego, Dr Mostafa Sharifzadeh, Prof. Resat Ulusay, Mr Lauri Uotinen, Dr Philippe Vaskou, Dr Christophe Vibert, Dr Thierry You, Dr Yingxin Zhou.

The authors are additionally grateful to Professor Qian Qihu, Academician of the Chinese Academy of Engineering and President of the Chinese Society for Rock Mechanics and Engineering for his continuing support of the ISRM Design Methodology Commission's work.

Also, the authors are indebted to Dr Chin-Fu Tsang (former DECOVALEX Project Chairman) and Dr Lanru Jing (DECOVALEX Project Secretary) for their assistance in providing some of the DECOVALEX historical material in Chapter 5. The authors appreciate and thank the DECOVALEX2015 Funding Organisations for their financial and technical support of the DECOVALEX project work described in that Chapter. The statements made in this book are, however, solely those of the authors and do not necessarily reflect those of the DECOVALEX Funding Organisations.

In addition, we thank the following personnel who contributed to the content of Chapters 6 and 7 describing the major tunnel and hydropower case examples; their help has significantly enhanced the content and value of the book. Dr Qiu Shili and Dr Zhang Yongjie wrote the first drafts of Chapters 6 and 7, respectively, and Dr Qiu Shili also assisted with some of the diagram preparation. Professor Jiang Quan provided ideas and considerable information relating to risk assessment of underground cavern groups. Professors Zhang Chunsheng, Hou Jing and Chen Xiangrong were involved with the geological conditions and design information for the Jinping II Project. Professor Chen Bingrui, Dr Xiao Yaxun and Mr Feng Guangliang took part in the rockburst monitoring and warning system in the headrace tunnels and water drainage tunnel at the Jinping II Project site, and Professors Wu Shiyong, Wang Jimin and Zeng Xionghui also provided support for that aspect of the work.

於 斧 斧 斧 斧

Lastly, we express our profound thanks to Carol Hudson for her meticulous checking of all the details of not only the original manuscript, but also both the initial and final proofs of the book. We may not have eliminated all the errors but, through Carol's help, there are far fewer.

About the authors

John A. Hudson and Xia-Ting Feng at an International Society for Rock Mechanics (ISRM)

Task Force meeting of the Commission on Design Methodology

held at the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China.

ISRM President 2007–2011: John A. Hudson ISRM President 2011–2015: Xia-Ting Feng

PROFESSOR JOHN A. HUDSON

John A. Hudson graduated from the Heriot-Watt University, UK, and obtained his PhD at the University of Minnesota, USA. He has spent his professional career in consulting, research, teaching and publishing in engineering rock mechanics, and was awarded the DSc. degree by the Heriot-Watt University for his contributions to the subject. He has authored many scientific papers and books, and was the editor of the 1993 five-volume "Comprehensive Rock Engineering" compendium, and from 1983–2006 editor of the International Journal of Rock Mechanics and Mining Sciences. Since 1983, he has been affiliated with Imperial College London as Reader, Professor and now Emeritus Professor. In 1998, he became a Fellow of the UK Royal Academy of Engineering and was President of the International Society for Rock Mechanics (ISRM) for the period 2007–2011. In 2015, the 7th ISRM Müller Award was conferred on Professor Hudson in recognition of "an outstanding career that combines theoretical and applied rock engineering with a profound understanding of the basic sciences of geology and mechanics".

PROFESSOR XIA-TING FENG

Xia-Ting Feng graduated in 1986 from the Northeast University of Technology and obtained his PhD in 1992 at the Northeastern University, China. He was then appointed and acted as Lecturer, Associate Professor and Professor at the same university. In 1998, he was admitted by the Hundred Talents Programme to the Chinese Academy of Sciences (CAS). Subsequently, he permanently joined CAS's Institute of Rock and Soil Mechanics at Wuhan, China. In 2003, he obtained the support of the China National Funds for Distinguished Young Scientists; in 2010, he became a Chair Professor of the Cheung Kong Scholars' Programme, Ministry of Education, China; and, in 2009, he was elected as President of the International Society for Rock Mechanics for the period 2011–2015. He is currently Director of the State Key Laboratory of Geomechanics and Geotechnical Engineering in Wuhan. Additionally, in 2012, Professor Feng became the Co-President of the Chinese Society for Rock Mechanics and Engineering. He has made original contributions to the subject of 'intelligent rock mechanics' and his methods have been applied to large rock engineering projects in China and other countries.

Contents

		nce nowledgements: International Society for Rock Mechanics nt the authors	xvii xix xxi
1	Intro	oduction and background	1
	1.1	The previous book "Rock Engineering Design" and this book	
		"Rock Engineering Risk"	1
	1.2	Rock engineering risk	3
	1.3	Governing flowchart for the book	6
	1.4	Structure and content of the book	7
	1.5	Chapter summary	8
2	Unc	ertainty and risk	9
	2.1	Introduction	9
	2.2	Approaches to risk management	16
	2.3	Epistemic and aleatory uncertainties	21
		2.3.1 Explanation of the terms 'epistemic' and 'aleatory'2.3.2 Procedures for dealing with epistemic/aleatory	21
		uncertainties and Eurocode 7	25
	2.4	Chapter summary	27
3	Rock	Engineering Systems (RES), auditing and Protocol Sheets	29
	3.1	Introduction to the systems approach and auditing concepts Reducing epistemic uncertainty using the rock engineering	29
		systems approach	30
	3.3	A review and explanation of the Rock Engineering Systems (RES) methodology	31
		3.3.1 The interaction matrix	32
		3.3.2 Coding the interaction matrix, and the Cause–Effect plot	36
		5.5.2 Coung the interaction matrix, and the Cause-Effect prot	.7()

		3.3.3	Mechanism pathways	43	
		3.3.4	Step-by-step evolution of the interaction matrix	48	
	3.4	Examples of Rock Engineering Systems (RES) applied to rock			
		mecha	nics and rock engineering design	56	
		3.4.1	Natural and artificial surface rock slopes	56	
			3.4.1.1 Surface blasting	56	
			3.4.1.2 Natural slopes	60	
			3.4.1.3 Instability of artificial rock slopes	78	
		3.4.2	Underground rock engineering	79	
			3.4.2.1 Underground blasting	79	
			3.4.2.2 Tunnel Boring Machines (TBMs)	82	
			3.4.2.3 Tunnel stability	8.5	
		3.4.3	Underground radioactive waste disposal	90	
		3.4.4	Use of the RES interaction matrix in other subject areas	92	
	3.5		r development of the RES methodology	105	
	3.6		ng and Protocol Sheets	107	
		3.6.1	'Soft', 'semi-hard' and 'hard' technical audits		
			and the audit evaluation	108	
	3.7	Chapte	er summary	109	
4	Rock	fractur	es and in situ rock stress	111	
	4.1	Introdu	uction	111	
	4.2		ractures	112	
		4.2.1	The spectrum of brittle and ductile rock deformation	112	
		4.2.2	Multiple deformational sequences	114	
			The risks associated with different types of rock mass	116	
	4.3		rock stress	122	
		4.3.1	The stress state in a rock mass	122	
			4.3.1.1 In situ rock stress scales	123	
		4.3.2	Stress perturbation factors	124	
			4.3.2.1 Rock inhomogeneity	124	
			4.3.2.2 Rock anisotropy	126	
			4.3.2.3 Rock fractures	127	
			4.3.2.4 The influence of a free surface	129	
		4.3.3	Evidence of <i>in situ</i> stress variability	131	
			4.3.3.1 Stress vs. depth compilations	131	
			4.3.3.2 The ways ahead for improving the		
			understanding of rock stress variability	132	
		4.3.4	A case study of modelling in situ rock stress		
			at the Olkiluoto site, western Finland	133	
	4.4	Chapte	r summary	137	

5		active reducing		osal: overcoming complexity	139	
	5.1		sposal obje		139	
		5.1.1		ple of radioactive waste repository	1.11	
		-	statistics		140	
	5.2			and Processes	143	
	5.3			Mechanical (THM+) processes	143	
		5.3.1		M+ issues in context	144	
		5.3.2		vation, operational and post-closure stages	147	
			5.3.2.1	The excavation stage	147	
			5.3.2.2	2	148	
			5.3.2.3		149	
			5.3.2.4		149	
			5.3.2.5	Modelling phases and scaling	151	
		5.3.3		of numerical computer codes	152	
			5.3.3.1	The nature of numerical codes	153	
			5.3.3.2	Uncoupled and coupled codes	153	
			5.3.3.3	Technical auditing of numerical codes	154	
			5.3.3.4	Capturing the essence of the problem	155	
			5.3.3.5	The overall Technical Auditing (TA)		
				procedure and risk	158	
			5.3.3.6	Validation	163	
			5.3.3.7	The future of numerical codes	164	
	5.4	The DI	ECOVALE	X programme	164	
		5.4.1		lopment of the DECOVALEX programme	165	
		5.4.2	Research work in the current DECOVALEX			
			phase: D	-2015	166	
			5.4.2.1	Task A: The Sealex in situ experiment,		
				Tournemire site, France	166	
			5.4.2.2	Task B1: The HE-E in situ heater test,		
				Mont Terri Underground Research		
				Laboratory, Switzerland	167	
			5.4.2.3	Task B2: The EBS experiment at Horonobe, Japan	168	
			5.4.2.4	Task C1: THMC modelling of rock	100	
				fractures	169	
			5.4.2.5	Task C2: Modelling water flow into the	107	
			OF HARLO	Bedrichov Tunnel, Czech Republic	170	
	5.5	Under	round Res	earch Laboratories (URLs)	172	
	stad	5.5.1		ose of URLs	172	
		5.5.2		dish Äspö URL	172	
	5.6		r summarv		176	
		3 / Hall / HC	T SHITTING IV		7.13	

6	Risks	associa	ted with l	ong deep tunnels	179
	6.1	Introdu	action		179
		6.1.1	Develop	ment of long deep tunnels	179
		6.1.2		rt to develop risk management for long,	
			deep tun		184
	6.2	Epister		inty analysis of design and construction for	
			ep tunnels		187
		6.2.1	_	cal settings	187
			6.2.1.1	Geological factors relating to rockbursts	
				in deep tunnels	187
			6.2.1.2		
				or large deformation behaviour	189
		6.2.2	Rock str	_	194
		6.2.3	Hydroge		196
		6.2.4		es of the rock mass	198
		6.2.5	Project le		200
		6.2.6	**/	on and support methods	200
	6.3			nty analysis of design and construction	
			g deep tun		203
				geology variations	203
				ess variations	205
		6.3.3	Local wa	nter variations	208
		6.3.4		cal behaviour of the rock mass after excavation	
				ne long term	210
	6.4	Metho		s and mitigate risk for long deep tunnels	212
		6.4.1	Rockbur		212
			6.4.1.1		212
			6.4.1.2	Risk mitigation concepts in rockburst	
				prone tunnels	216
			6.4.1.3	New approaches and optimisation of the	
			93.5565	risk-reduced construction procedures	218
		6.4.2	Water in		229
			6.4.2.1	Procedures for water inflow assessment	230
			6.4.2.2	Assessment of water inrush potential	231
			6.4.2.3	Assessment of tunnel water inflow	232
			6.4.2.4	Treatment technologies for tunnel water inrush	232
		6.4.3		formations of weak rock in deep tunnels	233
		51.10	6.4.3.1	Large deformation assessment	235
			6.4.3.2	Treatment technologies for large deformations	241
		6.4.4		m stability	250
		51111	6.4.4.1	Long term stability assessment in deep tunnels	250
			6.4.4.2	Treatment technologies to ensure long term	200
				stability in deep and long tunnels	254

	6.5			le: Assessment and mitigation of risk for deep	254
				ing II Hydropower Station, China	4,5
		6.5.1		uncertainty analysis of headrace long	257
			deep tunn 6.5.1.1	Geological setting	257
			6.5.1.2	Rock stress	259
					262
			6.5.1.3	Hydrology	
			6.5.1.4	Properties of the rock mass	264
			6.5.1.5	Specific project location	268
			6.5.1.6	Excavation and support method	269
			6.5.1.7	Water inrush	272
			6.5.1.8	Rockbursts	273
			6.5.1.9	Large deformations	278
			6.5.1.10		279
		6.5.2		uncertainty analysis of the headrace tunnels	279
			6.5.2.1	Geological variations at different chainage	2 == /
				intervals	279
			6.5.2.2	Rock stress variations affecting the three-	
				dimensional stress field	282
			6.5.2.3	Local water variations based on prediction	
				in advance	282
			6.5.2.4	Mechanical behaviour of the rock mass after	
				excavation and in the long term	282
		6.5.3		nt and mitigation of local risk during	
			the constr	ruction of the headrace tunnels	289
			6.5.3.1	Water inrush	289
			6.5.3.2	Rockburst: monitoring, in situ tests, warning	
				and mitigation	296
			6.5.3.3	Large deformation: monitoring and treatment	304
			6.5.3.4	Long term stability	310
	6.6	Chapter	summary		316
7	Risks	associat	ed with hy	dropower cavern groups	319
	7.1	Introduc	tion		319
	7.1	7.1.1		ant of laws budge proves	319
				nent of large hydropower cavern groups	312
		7.1.2		tatus of design and risk management for large	221
		712	rock cave		321
		7.1.3		new method of risk management required?	323
		7.1.4		owchart for risk management for large	22
		715		ver cavern groups	324
		7.1.5		I final risk management for assessing	
				ating the risks for a large hydropower	
			cavern gro	oup	325

7.2	Datab	ise of 60 large hy	dropower cavern groups in China	325
	7.2.1		stablishing a database	325
	7.2.2	Content of the	database	326
	7.2.3	Statistical analy	ysis of key issues	330
			ological character and rock mass quality	330
			cture and strength of the rock mass	330
			ss conditions	330
		7.2.3.4 Arra	ngement of cavern group by size	337
			avation scheme and parameters	337
		7.2.3.6 Supp	port parameters	347
			nitoring	352
		7.2.3.8 Rocl	kbolt stresses	352
		7.2.3.9 Stres	ss in cable anchors	352
		7.2.3.10 Rela	xation depth of the surrounding rock	352
		7.2.3.11 Frac	tures in the surrounding rock mass	356
		7.2.3.12 Typi	cal failure modes	363
		7.2.3.13 Effect	ct of loss of cable anchors and rockbolts	368
		7.2.3.14 Mea	sures used to reduce local risks	369
7.3	Epister	nic uncertainty ar	nalysis	371
	7.3.1	C .		371
	7.3.2	In situ rock stre	ess	373
	7.3.3	Hydrogeology		377
	7.3.4	Properties of th	e rock mass	379
	7.3.5	Specific project	location	380
	7.3.6	Excavation and	support method	382
7.4	Aleato	y uncertainty and	alysis	383
	7.4.1	Detailed geolog	y variations	383
	7.4.2	Rock stress var		386
	7.4.3	Local water var		387
	7.4.4		naviour of the rock mass after excavation	
		and in the long		389
7.5			for a large hydropower cavern group	390
	7.5.1	Principles		390
	7.5.2		essment and mitigation of overall risk	
			opower cavern group before construction	390
			nod to determine the membership degree	
			e assessment index	393
			tht vector determining method	406
			rmining the overall risk frequency	411
			rmining overall risk consequence	413
			all risk control analysis	413
	7.5.3		essment and mitigation of local risk	
		for a large hydr	onower cavern group before construction	111

		7.5.3.1	Large deformation local risk assessment model before construction	414
		7.5.3.2	Index membership degree determining	
			method	416
	7.5.4		for assessment and mitigation of local risk for	
		-	ydropower cavern group during construction	430
7.6			ole: Assessment and mitigation of risk	
			ınd powerhouse at Jinping II Hydropower	
	Station	, China		432
	7.6.1	Epistemi	c uncertainty analysis	432
		7.6.1.1	Geological setting	432
		7.6.1.2	Rock stress	433
		7.6.1.3	Hydrology	434
			Specific project location	434
			Excavation and support method	434
	7.6.2		ent and mitigation of overall risk before	
		construc		435
		7.6.2.1	Assessment	435
		7.6.2.2	Risk mitigation measures	437
	7.6.3		ent and mitigation of local risk before	
		the const		437
		7.6.3.1	Assessment	437
			Risk mitigation measures	440
	7.6.4		uncertainty analysis	440
	7 104 1	7.6.4.1		110
		7.01 (11	different layers	440
		7.6.4.2		442
		7.6.4.3		442
		7.6.4.4	Mechanical behaviour of the rock mass after	772
		/.U.T.T	excavation and in the long term	443
	7.6.5	Accoron		443
	7.0.0	construct	ent and mitigation of local risk during	4.40
				449
		7.6.5.1	Construction of the main powerhouse layer I	449
		7.6.5.2	Construction of main powerhouse layer II	4.50
		= < = >	and transformer chamber layer I	452
		7.6.5.3	Construction of main powerhouse layer III	
			and transformer chamber layer II	461
		7.6.5.4	Construction of main powerhouse layer IV	
			and transformer chamber layer III	472
		7.6.5.5	Construction of layer V of the main	
			powerhouse	479
		7.6.5.6	Construction of layers VI, VIII and IX of the	
			main powerhouse	485

			7.6.5.7	Construction of layer VII of the main	
				powerhouse	487
			7.6.5.8	Construction of different types of tunnel	492
			7.6.5.9	Overall evaluation of the complete	
				construction and final design	496
		7.6.6	Importan	nt points	497
			7.6.6.1	Optimisation of bench height of layers II	
				and III, and the excavation procedure	
				for layers IV–IX	497
			7.6.6.2	More than ten local warnings and	
				reinforcement improved the main	400
				powerhouse and transformer chamber	499
			7.6.6.3	Support reinforcement for different types	100
			-	of tunnel	499
			7.6.6.4	Overall evaluation of the complete	# O O
		CI.		construction process and final design	500
	7.7	Chapt	er summary	,	502
8	Con	cluding	remarks		505
v	COIII	cidania	CITICITA		
			2.1		F07
AF	pendi	x A: Ca	vern risk e	vents during construction	507
Ap	pendi			Basic Quality' (BQ) system	
		for	rock mass	classification	525
	B1	Introd	uction		525
	B2	Termin	nology and	symbols	525
		B2.1	Terminol	ogy	525
		B2.2	Symbols		526
	B3	Classif	fication para	ameters for the rock mass basic quality	526
		B3.1	Classifica	ation parameters and the method	
			of their d	etermination	526
		B3.2		ve classification of rock mass solidity	526
		B3.3	-	ve classification of rock mass integrity	529
		B3.4	Determin	ation and classification of quantitative indices	529
	B4	Classif	fication of r	ock mass basic quality	530
		B4.1		ation of the rock mass basic quality class	530
		B4.2		ve characteristics of the basic quality	
		umai la		asic quality index	530
	B5		_	fication for a rock mass	531
		B5.1	General r		531
		B5.2	Engineeri	ng rock mass classification	531