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Preface

The use of filamentous fungf in industrial processes is well recognized and
gaining more importance with the current awareness and rapid expansion o
biotechnology. The current volume will be complementary to Volume
Industrial Mycology which balanced the historical development with the curs
rent practices of industrial mycology. Volume¥ highlights the technologlc
aspect of cultivation of filamentous fungi.

It is acknowledged that, compared to other micro-organisms, successful
cultivation of the filamentous fungi may require a greatey attention to detail.
However, the wide range of cultivation conditions which can be tolerated
offer considerable scope for commercial  exploitation. Considerabl
attention has been given, therefore, to the technology of industrial
mycology, whether in liquid or solid state fermenters. This ranges from
preservation of the fungi, via the fermentation, to the separation of the
biomass from the fermentation broth. A chapter on industrial genetics is
also included; this is an area which, in spite of the lack af attention, holds:
considerable promise.

Inindustrial apphcatlon of the filamentous fungi, attention has been gwen
to ‘new’ areas in which these organisms play a major role. Again the
emphasis has been on process technology. The economics of industrial
mycology is discussed in relation to a well known process using a filamentous
fungi.

As an illustration of the degree of attention required by the filamentois
fungi, a chapter on fungal toxicity is included. If we do not get it right, it can
go wrong, very wrong, as the chapter illustrates. Fungal toxicity has con-
siderable commercial implications, however, in industrial mycology it
should not be a problem we will encounter.
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CHAPTER 1

Fermenter Design
B. KRISTIANSEN and H. E. CHAMBERLAIN

1.1 Fermenter Design Considerations/page 1 % By
1.2 Fermenter Configurations/page 5 ; :
1.3 Aeration and Agitation/page 11

1.4 Fermenter Fluid Rheology/page 13

1.5 References/page 17

1.1 Fermenter Design Considerations

Modern fermentations require that the fermenter provides an environment
suitable for the growth of a pure culture or a defined mixed culture, which
can be run free from contamination and under controlled conditions. A well-
designed vessel will also ensure the culture is contained with no aerosol leaks
of the vessel contents, since repeated exposure to even a non-pathogen can,
in certain circumstances, be hazardous.

The design must incorporate a device for mixing the contents, an air
supply for aerobic processes, probes to monitor the environment and
regulators to control it. There must be provision for inoculation and
sampling, as well as for charging and discharging the vessel. In continuois
culture, it is necessary to monitor and control the flow rate of the medium as
weli as the culture volume and mass.

Incorporating all these features means that the construction has many
potential sources for the entry of contaminants. Good aseptic design at this
point is crucial. The following cardinal design rules will apply (Aiba,
Humphrey & Millis, 1973):

1. There should be no direct connexions between sterile and non-sterile parts
of a system.

2. Minimize flange connexions. These can move under vibration and heat
and provide entry for contaminants.

3. Use all-welded construction if possible.

4. Avoid dead spaces an- crevices, etc.

5. Various parts of the system should be independently sterilizable.

Materials of construction

The material of the vessel must be non-toxic, able to withstand steam under
pressure so that it can be sterilized and must be resistant to corrosive effects
of sterilization and high or low pH. Pits in the surface of :iie material can
harbour micro-organisms, hence the surface should be as smooth as
possible. In summary, the material used should not affect, or be affected by,

-, the environment.

Most laboratory and many pilot scale vessels are made of glass



2 FERMENTER DESIGN

(borosilicate or Pyrex). These are a multitude of shapes and sizes ranging
from squat stirred tank reactors, with an aspect ratio (height to diameter)
ranging from 1 (laboratory scale) up to 4 (industrial scale) through tower
fermenters with an aspect ratio greater than 6, to tubular loop fermenters
with a length to diameter ratio > 40.

Above 30 or 401 capacity, fermenters are normally stainless steel although
pilot plant vessels with no mechanical agitation can also be made of glass
(Malfait et al., 1981; Kristiansen & Bu’lock, 1980).

Stainless steel vessels mnust be highly polished and all metal parts should be
made of the same grade stainless steel to minimize electrolytic corrosion.

Fermenter capacity

In industrial processes, the fermenter capacity ultimately depends on the
desired product concentration. If the maximum concentration of cells that
will be cultured in a given fermentation process can be decided, then the total
volume of culture can be calculated from knowledge of the production
requirements (Brown, 1979). Fermenter size is also affected by the choice
between batch and continuous fermentation, normally continuous processes
require smaller vessels to give the same productivity as equivalent batch
processes. :

There are a number of additional constraints not directly related to the
fermentation process which also affect the size of new fermenters. These-
have been outlined by Brown (1981).

()  Existing fermenter volumes might have to be matched to maintain
" production planning and to be compatible with separation and

recovery equipment.

(i1) Foundation loadings may havt upper limit.

(#if) Vessel diameter may be limited by structural arrangements in an

s existing factory building.

“* (iv) Area-to-volume ratio decreases as the diameter is increased. Space for

necessary cooling surface, which is proportional to the vessel surface

) area becomes limiting at a diameter of about 4.5m.

{v) Limits to the size of off-site fabrication facilities or to the width of load
that can be transported on the highway.

(vi) Anincrease in the height of the vessel will probably mean that multiple
impellers will be required, necessitating a central bearing and a large
shaft diameter.

(vif} Increased height increases the static pressure, resulting in the need for
a high pressure air supply.

(viiiy High liquid height-to-vessel diameter ratio mlght cause severe foaming
problems.

(ix) Alarge vessel needs a large gearbox and drive motor, both of which are
usually mounted on the top of the vessel to simplify alignment
problems and minimize vibration. The wall of the vessel must be thick
enough to support the drive unit rather than contain the fluid.

(x) A large electric motor may require a non-standard 1100V supply of
electricity.

(xi) Circulation and, therefore, mixing times may be too great on a lafge
scale, especially if the fluid system is a highly viscous non-Newtonian
liquor.
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The results of the application of the above constraints have resultéd in
conventional stirred tank fermenters being commonly about 125 m? with the |
dimensions of a 4 m diameter and 10m height. Typical upper limits occur at _
approximately 210 m? with a diameter of 4.5m and a height of 14m.

In mechanically agltated fermenters, the energy input per unit volume
required for adequate mixing will often decrease with increasing fermenter
capacity. Friction in the agitator gland may consume a significant part of the
power input in small fermenters. The following required power input ranges
have been suggested by Solomons (1980) (Table 1.1)

Table 1.1 Effect of fermenter size on power input requirements.

Fermenter size Power input (WI-1)
Laboratory 8-10
Pilot plant 3-5
Plant 1-3

Mixing cost may contribute a significant part to the operating cost of
fermentation plants (Ryu & Oldshue, 1977). :

Process control

It is generally accepted that most fermentations could be improved by using
fully monitored and controlled environments. A lack of reliable and
sensitive on-line measuring instruments does not make this possible. It is
necessary to improve existing as well as developing potential monitoring
devices to obtain more information about the microbial activity in the
fermentation broth.

In addition to the shortage of process probes, there are few structured
mathematical models providing adequate description of fermentation
processes. It is difficult, therefore, to analyse the data obtained for purposes
of process control. The computer has become an essential tool in
fermentation technology. At present it is mainly used for data logging and
analysis. Its application has been the subject of a number of symposia, e.g."
Computer Applications in Fermentation Technology (Philadelphia, U.S.A.,
1978), and the Third International Conference on Computer Applications in
Fermentation Technology (Manchester, U.K., 1981).

There are a number of excellent sensors for monitoring process
parameters. A number of these, and the impact on fermenter desngn, is
briefly outlined below. For further details, see Chapter 3.

Temperature There are a number of reasons for temperature changes
during a fermentation (Atkinson, 1974): (i) Heats of reaction; (i/) energy
dissipated by the agitator; (iii) energy dissipated by passing air through the
culture; and (iv) heat loss to the air stream due to temperature changes and
increase in gas humidity.

In small vessels (iv) may be so large as to make it necessary to supply heat
to maintain the desired temperature. This is monitored by thermometers,
thermocouples, thermistors or metal resistance thermometers immersed in
the culture. Temperature control is normally effected by use of
cooling/heating water either through internal coils or external jackets.

v
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Filamentous fungi often have a preference for growth on solid surfaces and
for successful submerged cultivation of these organisms it is important to
reduce the surface area available for microbial attachment. This is an
important, but often overlooked, aspect of design of laboratory scale
fermenters, where hollow baffles or draught tubes are used for circulating
the cooling water. This makes the available surface area for microbial
attachment per fermenter volume exceptionally high and the resulting
immobilized cells may contribute significantly to the fermentation,
producing considerable scale-up problems.

Temperature control of large scale vessels suffers from the fact that as the
vessel size increases the ratio of surface area available for heat transfer
(=proportional to vessel surface area) to fermenter volume decreases. This
is illustrated in Table 1.2 (Fuchs, Ryu & Humphrey, 1971). It is often stated
that fermenters above 200m® require external heat exchangers for
temperature control. This makes the design more complex and will also
increase the risk of contamination.

Table 1.2 Geometric scale factors of typical fermentation equipment.

Fermenter Tank Impelier Liquid
volume diameter T diameter D, depth T s i (cm)
m {cm) (cm) D,/T (cm)  Tank volume

51 000 333 137 0.41 622.7 0.014
3 000 152.4 66 0.43 243.8 0.030
550 74.9 30.5 0.41 95.1 0.064

230 59.7 25.4 043 722 0.08

30 298 12,7 043 429 0.16

10 21.0 12.1 0.58 29.2 0.22

3 14.3 5.24 0.37 19.6 0.33

pH Fluctuations in pH occur because of products or by-products of the
fermentation, and since pH affects growth and metabolite production of
micro-organisms, pH control has become an essential part of fermentation.
It is monitored using steam-sterilizable pH probes described by Buhler &
Ingold (1976). These are normally glass reference eiectrodes and although
they deteriorate with repeated sterilization, are relatively stable.

In research fermenters, control is achieved by the addition of acid and
alkali via peristaltic pumps. In industrial processes, glucose is added to drop
the pH, and NH, gas passed in with the air increases pH. Often, buffers such
as CaCO, are added to the medium at the start, to stabilize pH.

Dissolved O, Chemical methods are available for the absolute
determination of dissolved oxygen, but these are time-consuming, and are
interfered with by many solutes present. Therefore, considerable effort has
been devoted to develop a device which will give a continuous read-out of
dissolved oxygen levels.

The basic principle of most of these detectors is the electrochemical
reduction of the uncombined oxygen at a constant potential, using the
current flowing as a measure of the amount of oxygen involved per unit time.

Oxygen' electrodes are either polarographic or galvanic, the former
requiring an external power source and incorporating elegrodm of noble



