
REACTIVE OXYGEN SPECIES in BIOLOGY and HUMAN HEALTH

Edited by SHAMIM I. AHMAD

REACTIVE OXYGEN SPECIES in BIOLOGY and HUMAN HEALTH

Edited by

SHAMIM I. AHMAD

Nottingham Trent University United Kingdom

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper Version Date: 20160407

International Standard Book Number-13: 978-1-4987-3545-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Ahmad, Shamim I., editor.

Title: Reactive oxygen species in biology and human health / [edited by]

Shamim I. Ahmad.

Description: Boca Raton: Taylor & Francis, 2016. | Includes bibliographical

references and index.

Identifiers: LCCN 2016010468 | ISBN 9781498735452 (alk. paper)

Subjects: | MESH: Reactive Oxygen Species--adverse effects | Oxidative

Stress--drug effects

Classification: LCC RB170 | NLM QV 312 | DDC 571.9/453--dc23

LC record available at http://lccn.loc.gov/2016010468

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

REACTIVE OXYGEN SPECIES in BIOLOGY and HUMAN HEALTH

Preface

Reactive oxygen species (ROS) have been identified to play major roles in our lives. This is evident from the fact that since their first documented publication in 1945 by Stuffins and Weatherall [1] and in 1946 by Mann and Quastel [2], 161,400 research papers have been documented (PubMed, November 6, 2015). Indeed, ROS production, their interactions with a large number of biomolecules and the resulting damage and consequences, and their roles in inducing a large number of human diseases, also positively affecting certain metabolic processes and playing roles in aging, are highly complex areas of human biochemical metabolism and require much more studies to obtain a more complete picture.

ROS are unstable reactive molecules, have one or more unpaired electron(s), and are able to oxidize nearby molecules to gain an electron to enter the ground states. A number of ROS in biological systems include lipid peroxides, nitric oxide (NO), singlet oxygen ($^{1}O_{2}$), ozone (O_{3}), and hypochlorous acid (HOCl); however, superoxide anions (O_{2} *-), hydroxyl radicals (*OH), and hydrogen peroxide (H $_{2}O_{2}$) are the three most important ROS playing dual roles in biological systems. Interestingly, these three ROS are interconvertible, in that the oxygen molecule can be converted to O_{2} *- by accepting an electron. In turn, the dismutation reaction by superoxide dismutase (SOD) can convert O_{2} *- to $H_{2}O_{2}$, and this finally may be partially reduced to *OH or fully reduced to water.

ROS can be produced endogenously or exogenously. Endogenously, they are produced naturally and continuously in biological systems as a result of leakage of electrons from the electron transport chain in mitochondria. Additionally, they are produced by various enzyme reactions in the systems such as those carried out by xanthine oxidase and by cytochrome P450. Also, autoxidation of small molecules (e.g., catecholamine), response to xenobiotics and exogenous environmental exposures, ischemia, and inflammatory stimuli are also responsible for the production of ROS. Endogenously, ROS are also produced through the ROS NADPH oxidase (NOX) complex in the cell membrane, mitochondria, peroxisomes, and endoplasmic reticulum.

A number of exogenous agents playing roles in ROS production include xenobiotics, pollutants, drugs, smoke, tobacco, and radiation. A good example of production of ROS by ionizing radiation is a set of reactions in which water is converted to 'OH, then to H_2O_2 and to O_2 '-, and ultimately to oxygen.

ROS being highly reactive can cause damages to biological systems, including DNA strand breaks, base modifications leading to mutations, inhibition of RNA and protein synthesis, protein damage including disruption of amino acid bonds and also their cross-linking, oxidation of membrane phospholipids, lipid peroxidation, disruption of membrane ion gradients, and depletion of cellular levels of ATP leading to cellular dysfunction. Mitochondria, having the highest turnover of oxygen, involving enzymes of the respiratory chain, are the specific targets of ROS. Out of the three ROS, 'OH is the most reactive and can immediately interact with any molecule in its vicinity and can remove electron, turning that molecule into a free radical, giving rise to chain reactions. 'OH specifically induces hydroxylation of deoxyguanosine in DNA forming 8-OH-dG, which can be a site for mutagenesis and, possibly, cancer. O2' in comparison to 'OH is not that much reactive by itself but can initiate lipid peroxidation in its protonated form or can inactivate certain specific enzymes. H₂O₂ has low reactivity, is more stable, and hence can travel into the nucleus and can react with important components such as nucleic acids and nuclear proteins besides other cellular components such as lipids.

ROS are beneficial at physiological levels and assist in maintaining normal cell function; it is therefore essential that they be maintained at homeostatic levels. The beneficial roles of ROS include induction of host defense against a variety of pathogens. Defense against viral infections is carried out by potentiating RIG-like helicase-1 and mitochondrial antiviral signaling protein. ROS have also been implicated with mobilization of the ion transport system and a variety of inflammatory responses, including cardiovascular disease (CVD) and ischemic injury and also in hearing impairment due to ototoxicity by cisplatin and congenital deafness. Interestingly, people suffering from granulomatous disease, in which ROS production is reduced or absent, become more susceptible to infection by a range of pathogenic bacterial species.

Nature has endowed living systems with a number of protective mechanisms mostly involving enzymes whose roles are to scavenge excessive and unwanted ROS present in the system. ROS scavenging enzymes include catalase and peroxidase (for H_2O_2) and SOD that catalyze the dismutation of $O_2^{\bullet\bullet}$ into oxygen and H_2O_2 . Catalase converts H_2O_2 to oxygen and $2H_2O_2$. Also in the system, low-molecular-weight antioxidants such as ascorbic acid, α -tocopherol or vitamin E, and glutathione are present. In a recent article, it has been shown that mitochondria are the major source of MnSOD, and this enzyme constitutes an essential defense against $O_2^{\bullet\bullet}$; further, this and other nitrogen species are responsible for various redox-related diseases and aging. A number of neurodegenerative diseases (NDs) associated with ROS include amyotrophic lateral sclerosis (ALS), Parkinson's disease, Alzheimer's disease (AD), and Huntington's disease (HD) (for more details, see [3]), as well as age-related macular degeneration, atherosclerosis, and various types of cancers.

In this book, attempts have been made to cover as much information about ROS as possible with the exception of their role in aging, which is still at the hypothesis stage.

For the readers' easy reading the contents of the chapter has been sectionalized below.

Section I includes Chapters 1 through 6 in which the introduction, detection, and production of ROS are described. In Chapter 5, special emphasis is given to phenolic compounds and vitamin E for their abilities to act as antioxidants; however, due to their overall low concentrations, doubt has been casted on their *in vivo* effectiveness. Chapter 6 highlights the role of lipoprotein-associated oxidative stress and suggests that its assessment in plasma may be used as the best biomarkers of oxidative stress.

Section II embraces Chapter 7 in which Carmen et al. have intricately addressed the importance of accumulation of iron in the brain resulting in the development of a group of neurodegenerative disorders. Several causative genes for neurodegeneration with brain iron accumulation (NBIA) have been identified, which are associated with Parkinsonism-related disorders. It is suggested that increased knowledge of NBIA genes and their functions should help to better understand the clinical picture, MRI findings, and disease mechanisms.

Section III discusses a number of NDs. In Chapter 8, Perry addresses one of the most important diseases, ALS, also known as motor neuron disease. Despite a large number of studies being carried out, its exact mechanism still remains unclear. One important finding linked with the disease is the mutation in SOD-1 (coding for Cu, Zn SOD), which may be responsible for the disease pathology. Chapter 9 presents the complexity of AD and its therapeutic strategies. HD, another ND, which is associated with mitochondrial dysfunction, has been addressed comprehensively in Chapter 10, and readers may gain considerable insight from it. In Chapter 11, epilepsy, another ND caused by ROS and reactive nitrogen species (RNS) associated with mitochondrial dysfunction, is described. Mitochondrial DNA and phospholipids have specifically been identified as the targets of ROS and RNS. Interestingly, certain psychological disorders have also been associated with ROS-induced brain injury, which is critically addressed in Chapter 12. In Chapter 13, studies on another frequently found neurological disease, multiple sclerosis, and the latest treatment regimen worthwhile to be studied are presented.

Section IV addresses autoimmune diseases caused by ROS. In Chapters 14 and 15, two important diseases are included: asthma, caused by the dysregulation of the oxidant–antioxidant balance, and autoimmune liver diseases, caused by oxidative stress from cigarette smoking, wherein the smoke contains a large number of toxic, carcinogenic, and mutagenic chemicals. Chapter 15 also includes other autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, thyroid disease,

Preface xi

and primary biliary cirrhosis. The use of immunosuppressants has been recommended as a possible regimen. Systemic lupus described in Chapter 27 is another ROS-activated autoimmune disease that can affect several organs, including the kidneys, skin, lungs, brain, and heart. Oxidative stress, leading to oxidative modifications of functional proteins, lipid, and DNA, ultimately results in the breakage of immune tolerance, apoptosis, necrosis, autophagy, and increased tissue damage.

Section V includes Chapters 16 through 19 that address a number of different types of cancers, including lung cancer, breast cancer, and melanoma. Detailed analyses of these cancers alongside their possible treatment regimens are intricately presented and deserve priority in the reading list.

Section VI discusses CVDs induced by ROS. They too are a highly important set of diseases. In Chapters 20 and 21, Johnson and Shimokawa, respectively, present their in-depth knowledge of this subject. CVDs remain the leading cause of human death and much information about their causes, mechanisms, and treatments is available. Mangge in Chapter 22 intricately presents the ROS-associated complex biochemical processes inducing inflammation as an important cause of CVDs. Chapter 23 explains the roles carotenoids play in preventing CVDs and how this agent can improve cardiovascular health. These authors recommend more studies to be carried out to minimize the risk of CVDs.

Section VII includes Chapters 24 through 39 addressing other human diseases induced by oxidative stress. These include sickle cell disease (Chapter 24), which is a group of complex genetic hemolytic disorders associated with high morbidity and mortality and which still remains to be fully understood. Nonalcoholic steatohepatitis (Chapter 25) addressed by Yamamoto is more commonly found in patients suffering from diabetes. ROS have been accepted as the main inducers of this disease in which liver fat deposition commonly prevails. In Chapter 26 on retinopathy, one of the several diabetic complications, the authors have ascertained that oxidative stress is the central factor involved in its pathology and the polyol pathway plays key roles in the production of ROS. Fibromyalgia, addressed by Fatima in Chapter 28, is one of the least understood human diseases caused by imbalance between malondialdehyde and SOD, and patients suffering from this disease sustain persistent and widespread pain and tingling sensations, muscle spasms, limb weakness, nerve pain, and muscle twitching. Unfortunately, the etiology of this disease is not well known, and only limited treatments are available. Chronic obstructive pulmonary disease, asthma, and pulmonary hypertension are shown, by Zuo in Chapter 29, to be induced by excessive ROS production. Further studies have been suggested to unravel the complete picture and successful treatment. Chapters 30 through 32 are dedicated to human fertility, and its awareness may assist those suffering from infertility. Chapter 33 presents a detailed study on the aging of human skin by ROS, and, more importantly, a good number of color figures have been added to enrich the chapter. Also, awareness has been included on how to avoid or minimize skin aging specially when induced by exogenous agents. Ataxia telangiectasia, an inborn genetic disease, has been shown, by Nakajima in Chapter 34, to be due to a mutation in the ATM gene, and the regulation of this gene expression is carried out by oxidative stress. It is intriguing to learn in Chapter 35 by Hong that oxidative stress can have profound effects on viral pathogenesis and on the host, and this is due to an imbalance between pro- and antioxidants leading to inflammatory response, viral replication, and apoptosis. Hargreaves in Chapter 36 highlights the importance of organophosphates, the highly toxic group of chemicals that can affect the nervous system by exerting its toxicity via oxidative stress. Conclusion is drawn on the basis of antioxidants attenuating some of the toxic effects. Chapters 37 through 39 address the roles of ROS in morphine addiction, exercise, nitric oxide, and epigenetics, respectively.

It is hoped that the material presented in this book will stimulate both experts and novice researchers in the field with excellent overviews of the current status of research and pointers to future research goals. Clinicians, nurses, carers, and families should also benefit from the information presented in handling and treating their specific patients. Also, the insights obtained should prove valuable for further understanding such a large number of diseases at the molecular level and

allow the development of new biomarkers, novel diagnostic tools, and highly effective therapeutic drugs to treat patients suffering from these devastating diseases.

Shamim I. Ahmad, BSc, MSc, PhD

School of Science and Technology Nottingham Trent University Nottingham, United Kingdom

REFERENCES

- Stuffins, C.B. and Weatherall, H., Determination of the peroxide value of oil and fat, Analyst, 70, 403, 1945.
- 2. Mann, P.J.G. and Quastel, J.H., Toxic effects of oxygen and hydrogen peroxide on brain metabolism, *Biochemistry*, 40, 139, 1946.
- 3. Ahmad, S.I. (ed.), Neurodegenerative Diseases, Springer-Verlag, New York, 2012.

Acknowledgments

The editor cordially acknowledges the various authors of this book for their contribution of the chapters with in-depth knowledge and highly skilled presentation. Without their input, it would not have been possible to produce a book on such an important subject. The editor also acknowledges the hard work, friendly approach, and patience of Taylor & Francis Group staff, especially Ashley Weinstein, Chuck Crumly, and Hilary LaFoe, for their efficient and highly professional handling of this publication.

Editor

Shamim I. Ahmad, after earning his master's degree in botany from Patna University, Bihar, India, and his PhD in molecular genetics from the University of Leicester, England, joined Nottingham Polytechnic as a grade 1 lecturer and was subsequently promoted to the senior lecturer post. Nottingham Polytechnic subsequently became Nottingham Trent University, where, after serving for about 35 years, he took early retirement, yet continued serving as a part-time senior lecturer. Dr. Ahmad is now spending much of his time producing/writing medical books. For more than three decades, he researched on different areas of molecular biology/genetics, including thymineless death in bacteria, genetic

control of nucleotide catabolism, development of anti-AIDs drug, control of microbial infection of burns, phages of thermophilic bacteria, and microbial flora of Chernobyl after the accident at the nuclear power station. But his main interest, which started about 30 years ago, is DNA damage and repair specifically by near-ultraviolet light, especially through the photolysis of biological compounds, production of reactive oxygen species, and their implications on human health, including skin cancer. He is also investigating near-ultraviolet photolysis of nonbiological compounds such as 8-metoxypsoralen and mitomycin C and their importance in psoriasis treatment and in Fanconi's anemia. In collaboration with the University of Osaka, Japan, in his recent research publication, Dr. Ahmad and his colleagues were able to show that a number of naturally occurring enzymes were able to scavenge the reactive oxygen species.

In 2003, Dr. Ahmad received the prestigious "Asian Jewel Award" in Britain for "Excellence in Education." He has been editor for the following books published by Landes Bioscience/Springer: Molecular Mechanisms of Fanconi Anemia (2006), of Xeroderma Pigmentosum (2009), of Cockayne Syndrome (2009), of Ataxia Telangiectasia (2009), Diseases of DNA Repair (2010), Neurodegenerative Diseases (2012), Diabetes: An Old Disease, a New Insight (2013), and Obesity: A Practical Guide (2016).

Contributors

Oluwasesan Adegoke

Research Institute of Green Science and Technology Shizuoka University Shizuoka, Japan

and

Department of Chemistry University of Pretoria Pretoria, South Africa

Ashok Agarwal

American Center for Reproductive Medicine Cleveland Clinic Cleveland, Ohio

and

Department of Physiology University of Health Sciences Lahore, Pakistan

Ashish Aggarwal

Department of Biochemistry
Panjab University
and
Centre of Excellence
Department of Internal Medicine
Postgraduate Institute of Medical Education
and Research
Chandigarh, India

Gulfam Ahmad

American Center for Reproductive Medicine Cleveland Clinic Cleveland, Ohio

and

Department of Physiology University of Health Sciences Lahore, Pakistan

Shamim I. Ahmad

School of Science and Technology Nottingham Trent University Nottingham, United Kingdom

Sheikh F. Ahmad

Department of Pharmacology and Toxicology King Saud University Riyadh, Saudi Arabia

Haseeb Ahsan

Department of Biochemistry Faculty of Dentistry Jamia Millia Islamia New Delhi, India

Anami Ahuja

Department of Biotechnology
Meerut Institute of Engineering and
Technology
Meerut, India
and
Division of Regenerative Medicine
National Innovative Research Academy
Meerut, India

Mohammed M. Al-Harbi

Department of Pharmacology and Toxicology King Saud University Riyadh, Saudi Arabia

Finley J. Allgaier

Department of Biochemistry University of California Riverside, California

Eduardo Alves de Almeida

Department of Chemistry and Environmental Sciences Sao Paulo State University Sao Jose do Rio Preto, Brazil

Riccardo Amorati

Dipartimento di Chimica "G. Ciamician" Università di Bologna Bologna, Italy

Ana Carolina de Andrade

Laboratory of Inflammatory Mediators State University of West Paraná Unioeste, Brazil

António Araújo

Medical Oncology Service of Centro
Hospitalar do Porto (CHP)
Unit of Oncobiology Research
Unit for Multidisciplinar Research In
Biomedicine (UNIO-UMIB)
and
Abel Salazar Institute for the Biomedical
Sciences (ICBAS)
University of Porto
Porto, Portugal

Luiz Roberto G. Bechara

School of Physical Education and Sport University of São Paulo São Paulo, Brazil

Edis Belini Junior

Department of Biology Sao Paulo State University Sao Jose do Rio Preto, Brazil

R. Boguen

Centre of Reproductive Biotechnology University of La Frontera Temuco, Chile

Claudia Regina Bonini-Domingos

Department of Biology Sao Paulo State University Sao Jose do Rio Preto, Brazil

Tanima Bose

Department of Molecular Physiology Leibniz Institute for Neurobiology Magdeburg, Germany

Michaël Boyer-Guittaut

Laboratoire de Biochimie EA3922 Research Team Université Bourgogne Franche-Comté Besançon, France

Abhishek Chandra

Feil Family Brain and Mind Research Institute Weill Cornell Medical College New York, New York

Chia-Chen Chuang

Radiologic Sciences and Respiratory Therapy Division Wexner Medical Center and Interdisciplinary Biophysics Graduate Program The Ohio State University Columbus, Ohio

Ana Coelho

Molecular Oncology and Viral Pathology
Group-CI
Portuguese Institute of Oncology
and
Unit of Oncobiology Research
Unit for Multidisciplinar Research In
Biomedicine (UNIO-UMIB)
and
LPCC Research Department
Portuguese League Against Cancer (NRNorte)
and
Faculty of Medicine
University of Porto
Porto, Portugal

Alejandra Darling

Centro de Investigación Príncipe Felipe Valencia, Spain

Kapil Dev

Department of Cytokinetics Institute of Biophysics Brno, Czech Republic

Stefan S. Du Plessis

Division of Medical Physiology Stellenbosch University Stellenbosch, South Africa and

Center for Reproductive Medicine Cleveland Clinic Cleveland, Ohio

Abraham Eisenstark

Division of Biological Sciences University of Missouri Columbia, Missouri

Ahmed M. El-Sherbeeny

Industrial Engineering Department King Saud University Riyadh, Saudi Arabia

Carmen Espinós

Hospital Sant Joan de Déu Barcelona, Spain and Centro de Investigación Biomédica en Red Valencia, Spain

Ghizal Fatima

Department of Biochemistry King George Medical University Lucknow, India

Jaroslava Folbergrová

Department of Developmental Epileptology Institute of Physiology of the Czech Academy of Sciences Prague, Czech Republic

Patricia B.C. Forbes

Department of Chemistry University of Pretoria Pretoria, South Africa

Mario C. Foti

Consiglio Nazionale delle Ricerche Istituto di Chimica Biomolecolare Catania, Italy Istituto di Chimica Biomolecolare del CNR Catania, Italy

Maria Alessandra Gammone

Department of Medical Oral Biotechnological Science University G.d'Annunzio Chieti, Italy

Andrzej Głabiński

Department of Neurology and Stroke Medical University of Lodz Lodz, Poland

Mónica Gomes

Molecular Oncology and Viral Pathology
Group—CI
Portuguese Institute of Oncology
and
Unit of Oncobiology Research
Unit for Multidisciplinar Research In
Biomedicine (UNIO-UMIB)
and
Abel Salazar Institute for the Biomedical
Sciences (ICBAS)
University of Porto
and
LPCC Research Department
Portuguese League Against Cancer (NRNorte)
Porto, Portugal

Johanna M. Gostner

Division of Medical Biochemistry Biocenter of Innsbruck Medical University Innsbruck, Austria

Alan J. Hargreaves

School of Science and Technology Nottingham Trent University Nottingham, United Kingdom

Eric Hervouet

Laboratoire de Biochimie EA3922 Research Team Université Bourgogne Franche-Comté Besançon, France

James Hoerter

Department of Biological Sciences Ferris State University Big Rapids, Michigan

Jiann-Ruey Hong

Laboratory of Molecular Virology and Biotechnology Institute of Biotechnology National Cheng Kung University Tainan, Taiwan, Republic of China

Eric L. Johnson

Department of Family and Community
Medicine
University of North Dakota
and
School of Medicine and Health Sciences
Altru Diabetes Center
Grand Forks, North Dakota

Ashu Johri

Feil Family Brain and Mind Research Institute Weill Cornell Medical College New York, New York

Ma Jun

Binzhou medical University Yantai, People's Republic of China

Dominika Książek-Winiarek

Department of Neurology and Stroke Medical University of Lodz Lodz, Poland

Ngoc-Anh Le

Biomarker Core Laboratory Atlanta Research and Education Foundation Atlanta, Georgia

Hyoung-gon Lee

Department of Pathology Case Western Reserve University Cleveland, Ohio

Feng Liu-Smith

Department of Epidemiology and Department of Medicine University of California, Irvine Irvine, California

Vincenzo Lupo

Hospital Sant Joan de Déu Barcelona, Spain and Centro de Investigación Biomédica en Red Valencia, Spain

Nidhi Mahajan

Department of Biochemistry Panjab University Chandigarh, India

Harald Mangge

Clinical Institute of Medical and Chemical Laboratory Diagnosis Medical University of Graz Graz, Austria

Rui Medeiros

Molecular Oncology and Viral Pathology
Group—CI
Portuguese Institute of Oncology
and
Abel Salazar Institute for the Biomedical
Sciences
University of Porto
and
LPCC Research Department
Portuguese League Against Cancer (NRNorte)
and
Faculty of Health Sciences
Fernando Pessoa University
Porto, Portugal

Elżbieta Miller

Department of Physical Medicine Medical University of Lodz Lodz, Poland and Neurorehabilitation Ward III General Hospital in Lodz Lodz, Poland

Nobutaka Motohashi

Department of Neuropsychiatry University of Yamanashi Chuo, Japan

Ahmed Nadeem

Department of Pharmacology and Toxicology King Saud University Riyadh, Saudi Arabia

Tetsuo Nakajima

Research Center for Radiation Protection National Institute of Radiological Sciences Chiba, Japan

Swapan K. Nath

Arthritis and Clinical Immunology Research Program Oklahoma Medical Research Foundation Oklahoma City, Oklahoma

Akihiko Nunomura

Department of Neuropsychiatry University of Yamanashi Chuo, Japan

Mohammad Shamsul Ola

Department of Biochemistry King Saud University Riyadh, Saudi Arabia

Ibukun P. Oyeyipo

Division of Medical Physiology Stellenbosch University Stellenbosch, South Africa

Department of Physiology Osun State University Osogbo, Nigeria

Carolina Panis

Laboratory of Inflammatory Mediators State University of West Paraná Unioeste, Brazil

Bishnuhari Paudyal

Department of Radiology Thomas Jefferson University Philadelphia, Pennsylvania

Belén Pérez-Dueñas

Centro de Investigación Biomédica en Red and Centro de Investigación Príncipe Felipe Valencia, Spain

George Perry

San Antonio, Texas

Department of Pathology
Case Western Reserve University
Cleveland, Ohio
and
Neurosciences Institute
and
Department of Biology
University of Texas at San Antonio

J. Jefferson P. Perry

Department of Biochemistry University of California, Riverside Riverside, California

Bruno Ricardo Barreto Pires

Laboratory of Stem Cells National Cancer Institute Inca, Brazil

Lenora Ann Pluchino

Department of Biomedical and Diagnostic Sciences University of Tennessee Knoxville, Tennessee

Zheng Qiusheng

Binzhou Medical University Yantai, People's Republic of China

Paulo R. Ramires

School of Physical Education and Sport University of São Paulo São Paulo, Brazil

Vibha Rani

Department of Biotechnology Jaypee Institute of Information Technology Noida, India

Mohammad Latif Reshi

Laboratory of Molecular Virology and Biotechnology and Department of Life Sciences National Cheng Kung University Tainan, Taiwan, Republic of China

Kimio Satoh

Department of Cardiovascular Medicine Tohoku University Sendai, Japan

Dilip Shah

Center for Translational Medicine Thomas Jefferson University Philadelphia, Pennsylvania

Hiroaki Shimokawa

Department of Cardiovascular Medicine Tohoku University Sendai, Japan

Danilo Grünig Humberto da Silva

Department of Chemistry and Environmental Sciences Sao Paulo State University Sao Jose do Rio Preto, Brazil

Mateus Batista Silva

Laboratory of Inflammatory Mediators State University of West Paraná Unioeste, Brazil

Bongekile Skosana

Division of Medical Physiology Stellenbosch University Stellenbosch, South Africa

Mansoor Ali Syed

Department of Pediatrics Drexel University Philadelphia, Pennsylvania

Akinobu Takaki

Department of Gastroenterology and Hepatology Okayama University Okayama, Japan

Toshio Tamaoki

Department of Neuropsychiatry University of Yamanashi Chuo, Japan

Leonardo Y. Tanaka

School of Physical Education and Sport and Vascular Biology Laboratory University of São Paulo São Paulo, Brazil

Ana Luísa Teixeira

Molecular Oncology and Viral Pathology
Group-CI
Portuguese Institute of Oncology
and
Unit of Oncobiology Research
Unit for Multidisciplinar Research In
Biomedicine (UNIO-UMIB)
and
Abel Salazar Institute for the Biomedical
Sciences (ICBAS)
University of Porto
and
LPCC Research Department
Portuguese League Against Cancer (NRNorte)
Porto, Portugal

Cristina Tello

Hospital Sant Joan de Déu Barcelona, Spain

F. Treulen

Centre of Reproductive Biotechnology University of La Frontera Temuco, Chile

Pankaj K. Tyagi

Department of Biotechnology Meerut Institute of Engineering and Technology Meerut, India

Daisuke Uchida

Department of Gastroenterology and Hepatology Okayama University Okayama, Japan

P. Uribe

Centre of Reproductive Biotechnology University of La Frontera Temuco, Chile

Vanessa Jacob Victorino

Faculty of Medicine University of São Paulo São Paulo, Brazil

J.V. Villegas

Department of Internal Medicine University of La Frontera Temuco, Chile

Hwa-Chain Robert Wang

Department of Biomedical and Diagnostic Sciences University of Tennessee Knoxville, Tennessee

Tomasz Włodarczyk

Ophthalmology Department Warminski Hospital Bydgoszcz, Poland

Kazuhide Yamamoto

Department of Gastroenterology and Hepatology Okayama University Okayama, Japan

Jianhua Zhang

Department of Pathology University of Alabama at Birmingham and Department of Veterans Affairs Birmingham VA Medical Center Birmingham, Alabama

Tingyang Zhou

Radiologic Sciences and Respiratory Therapy
Division
Wexner Medical Center
and
Interdisciplinary Biophysics Graduate
Program
The Ohio State University
Columbus, Ohio

Xiongwei Zhu

Department of Pathology Case Western Reserve University Cleveland, Ohio

Li Zuo

Radiologic Sciences and Respiratory Therapy
Division
Wexner Medical Center
and
Interdisciplinary Biophysics Graduate
Program
The Ohio State University
Columbus, Ohio