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Preface

This book is designed primarily to supplement standard textbooks in fluid me-
chanics and hydraulics. It is based on the authors’ conviction that clarification and
understanding of the basic principles of any branch of mechanics can be accom-
plished best by means of numerous illustrative problems.

Previous editions of this book have been very favorably received. This third
edition contains two new chapters—one on fluid statics, the other on flow of
compressible fluids. Additionally, many chapters have been revised and expanded to
keep pace with the most recent concepts, methods, and terminology. Another very
important feature of this new edition is the use of the International System of Units
(SI). Precisely half of all problems that involve units of measure utilize SI units, the
other half employing the British Engineering System.

The subject matter is divided into chapters covering duly recognized areas of
theory and study. Each chapter begins with statements of pertinent definitions, prin-
ciples, and theorems together with illustrative and descriptive material. This material
is followed by graded sets of solved and supplementary problems. The solved prob-
lems illustrate and amplify the theory, present methods of analysis, provide practical
examples, and bring into sharp focus those fine points which enable the student
to apply the basic principles correctly and confidently. Free-body analysis, vector
diagrams, the principles of work and energy and of impulse-momentum, and New-
ton’s laws of motion are utilized throughout the book. Efforts have been made to
present original problems developed by the authors during many years of teaching
the subject. Numerous proofs of theorems and derivations of formulas are included
among the solved problems. The large number of supplementary problems serve as
a complete review of the material of each chapter.

In addition to its use by engineering students of fluid mechanics and hydraulics,
this book should be of considerable value as a reference for practicing engineers.
They will find well-detailed solutions to many practical problems and can refer to the
summary of the theory when the need arises. Also, the book should serve individuals
who must review the subject for licensing examinations or other reasons.

We hope you will enjoy using this book and that it will help a great deal in
your study of fluid mechanics and hydraulics. We would be pleased to receive your
comments, suggestions, and/or criticisms.

Jack B. Evett
Cheng Liu



Symbols and Abbreviations

The following tabulation lists the letter symbols used in this book. Because the alphabet is
limited, it is impossible to avoid using the same letter to represent more than one concept, Since
each symbol is defined when it is first used, no confusion should result.

B

Fg

Fr

gpm

Hy, hy
hp

acceleration, area
area

weir length, width of water surface,
bed width of open channel

coefficient of discharge, celerity of
pressure wave (acoustic velocity)

coefficient of contraction

coefficient of velocity

coefficient (Chezy), constant of integration
center of buoyancy

center of gravity

center of pressure, power coefficient
for propellers

coefficient of drag

thrust coefficient for propellers
coefficient of lift

torque coefficient for propellers
Hazen-Williams coefficient
cubic feet per second

center of pressure

diameter

unit diameter

efficiency

bulk modulus of elasticity, specific
energy

friction factor (Darcy) for pipe flow
force, thrust

buoyant force

pressure energy

Froude number

gravitational acceleration

(= 32.2 ft/sec? = 9.81 m/s?)
gallons per minute

head, height or depth, pressure head
total head (energy)

lost head (sometimes LH)
horsepower = 0.746 kW

X1

PN
b

=~

moment of inertia
product of inertia
joule

ratio of specific heats, isentropic (adia-
batic) exponent, von Karman constant

discharge factors for trapezoidal chan-
nels, lost head factor for enlargements,
any constant

lost head factor for contractions
kinetic energy

mixing length

length

equivalent length

roughness factor in Bazin formula,
weir factor for dams

metacenter
mass, molecular weight

distance from CB to mc

roughness coefficient, exponent, rough-
ness factor in Kutter’s and Manning’s
formulas

rotational speed
specific speed

unit speed

Mach number
pressure, wetted perimeter
pressure

power

pascal

potential energy
unit power

1b/ft?

Ib/in?, absolute
Ib/in?, gage

unit flow

volume rate of flow
unit discharge
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SYMBOLS AND ABBREVIATIONS

any radius

radius of pipe

gas constant, hydraulic radius
Reynolds number

slope of hydraulic grade line, slope of
energy line

slope of channel bed

specific gravity

time, thickness, viscosity in Saybolt
seconds

temperature, torque, time

peripheral velocity of rotating element
components of velocity in X, ¥, and Z
directions

volume, local velocity, relative velocity
in hydraulic machines

specific volume (= 1/y)

expansion factor for compressible flow

Vs shear velocity

1% average velocity

Ve critical velocity

Vi volume of fluid displaced
w weight, weight flow
We Weber number

X distance

v depth, distance

Ve critical depth

YN normal depth

Y

z elevation (head)

FA

height of weir crest above channel
bottom

angle, kinetic energy correction factor
angle, momentum correction factor

surface tension, intensity of tensile stress

speed factor, velocity potential, ratio

a (alpha)

B (beta)

y (gamma) specific (or unit) weight
8 (delta) boundary layer thickness
A (delta) flow correction term

€ (epsilon) surface roughness

n (eta) eddy viscosity

0 (theta) any angle

u (mu) absolute viscosity

v (nu) kinematic viscosity

T (pi) dimensionless parameter
p (rho) density

o (sigma)

T (tau) shear stress

¢ (phi)

¥ (psi) stream function

w (omega) angular velocity

Conversion Factors

1 cubic foot = 7.48 U.S. gallons = 28.32 liters
1 U.S. gallon = 8.338 pounds of water at 60°F
1 cubic foot per second = 0.646 million gallons per day

= 448.8 gallons per minute

1 pound-second per square foot () = 478.7 poises

1 square foot per second (v) = 0.0929 square meter per second

1 horsepower = 550 foot-pounds per second = 0.746 kilowatt

30 inches of mercury = 34 feet of water = 14.7 pounds per square inch
762 millimeters of mercury = 10.4 meters of water = 101.3 kilopascals



SYMBOLS AND ABBREVIATIONS

British Engineering System

International System to

Parameter to International System British Engineering System
Length 1 in = 0.0254 m I m= 3937 in
1 ft = 0.3048 m 1 m = 3.281 ft
Mass 1 slug = 14.59 kg 1 kg = 0.06854 slug
Force 11b=4448 N I N =0.2248 1b
Time Isec=1s 1s=1sec

Specific (or
unit) weight

Mass density

Specific gravity

Dynamic viscosity
Kinematic viscosity

Pressure

Surface tension

1 Ib/ft* = 157.1 N/m?

1 slug/ft® = 515.2 kg/m®
Same dimensionless

value in both systems

1 Ib-sec/ft> = 47.88 N-s/m?
1 ft*/sec = 0.09290 m?/s

1 1b/ft> = 47.88 Pa

1 Ib/in?> = 6.895 kPa

1 Ib/ft = 14.59 N/m

1 N/m* = 0.006366 Ib/ft}

1 kg/m® = 0.001941 slug/ft®
Same dimensionless

value in both systems

1 N-s/m? = 0.02089 lb-sec/ft>
1 m?/s = 10.76 ft*/sec

1 Pa = 0.02089 1b/ft

1 kPa = 0.1450 1b/in?

I N/m = 0.06853 Ib/ft

xiii
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Chapter 1

Properties of Fluids

FLUID MECHANICS AND HYDRAULICS

Fluid mechanics and hydraulics represent that branch of applied mechanics that deals with the
behavior of fluids at rest and in motion. In the development of the principles of fluid mechanics, some
fluid properties play principal roles, others only minor roles or no roles at all. In fluid statics, specific
weight (or unit weight) is the important property, whereas in fluid flow, density and viscosity are
predominant properties. Where appreciable compressibility occurs, principles of thermodynamics must
be considered. Vapor pressure becomes important when negative pressures (gage) are involved, and
surface tension affects static and flow conditions in small passages.

.

DEFINITION OF A FLUID

Fluids are substances that are capable of flowing and conform to the shape of containing vessels.
When in equilibrium, fluids cannot sustain tangential or shear forces. All fluids have some degree of
compressibility and offer little resistance to change of form.

Fluids can be classified as liquids or gases. The chief differences between liquids and gases are (a)
liquids are practically incompressible whereas gases are compressible and usually must be so treated
and (b) liquids occupy definite volumes and have free surfaces whereas a given mass of gas expands
until it occupies all portions of any containing vessel.

BRITISH ENGINEERING (OR FPS) SYSTEM OF UNITS

In this system the fundamental mechanical dimensions are length, force, and time. The corresponding
fundamental units are the foot (ft) of length, pound (lb) of force (or pound weight), and second (sec)
of time. All other units can be derived from these. Thus unit volume is the ft*, unit acceleration is the
ft/sec?, unit work is the ft-Ib, and unit pressure is the b/ft?.

The unit for mass in this system, the s/ug, is derived from the fundamental units as follows. For a
freely falling body in vacuum, the acceleration is that of gravity (q = 32.2 ft/sec’ at sea level), and the
only force acting is its weight. From Newton’s second law,

force in pounds = mass in slugs x acceleration in ft/sec
Then weight in pounds = mass in slugs x g(32.2 ft/sec?)

weight W in pounds
2(32.2 ft/sec®)

or mass M in slugs =

)

By equation (/), slug = Ib-sec?/ft.
The temperature unit of the British system is the degree Fahrenheit (°F) or, on the absolute scale,
the degree Rankine (*R).

INTERNATIONAL SYSTEM OF UNITS (SI)

In the SI, the fundamental mechanical dimensions are /ength, mass (unlike the British system), and
time. The corresponding fundamental units are meter (m), kilogram (kg), and second (s). In terms of
these, unit volume is the m®, unit acceleration the m/s?, and unit (mass) density the kg/m?.

1



2 PROPERTIES OF FLUIDS [CHAP. 1

The SI unit of force, the newton (N), is derived via Newton’s second law:
force in N = (mass in kg) x (acceleration in m/sz) )

Thus, | N=1kg- m/sz. Along with the newton are derived the joule (J) of work, where 1 J =1 N - m,
and the pascal (Pa) of pressure or stress, where 1 Pa =1 N/m?,

In the SI, temperatures are usually reported in degrees Celsius (°C); the unit of absolute temperature
is the kelvin (K).

SPECIFIC OR UNIT WEIGHT

The specific (or unit) weight ¥ of a substance is the weight of a unit volume of the substance.
For liquids, y may be taken as constant for practical changes of pressure. The specific weight of water
for ordinary temperature variations is 62.4 Ib/ft®, or 9.79 kN/m®. See Appendix, Table 1, for additional
values.

The specific weight of a gas can be calculated using its equation of state,

pv
7 3)
where pressure p is absolute pressure, v is the volume per unit weight, temperature T is the absolute
temperature, and R is the gas constant of that particular species:
Ry B universal gas constant

R=—=
g molar weight @)

Since y = 1/v, equation (3) can be written

=P
Y=1%T é)

MASS DENSITY OF A BODY p (rho) = mass per unit volume = y/g.

In the British Engineering system of units, the mass density of water is 62.4/32.2 = 1.94 slugs /ft>.
In the International system, the density of water is 1000 kg/m? at 4°C. See Appendix, Table 1.

SPECIFIC GRAVITY OF A BODY

The specific gravity of a body is the dimensionless ratio of the weight of the body to the weight of
an equal volume of a substance taken as a standard. Solids and liquids are referred to water (at 68°F
= 20°C) as standard, while gases are often referred to air free of carbon dioxide or hydrogen (at 32°F
= 0°C and 1 atmosphere = 14.7 1b/in* = 101.3 kPa pressure) as standard. For example,

weight of substance

ifi ity of bst: = 6
Specliic gmvity ot 4 fukstince weight of equal volume of water ©)

specific weight of substance

specific weight of water
__ density of substance
"~ density of water

Thus if the specific gravity of a given oil is 0.750, its specific weight is (0.750)(62.4 Ib/ft*) = 46.8 1b/ft®,
or (0.750)(9.79 kN/m?) = 7.34 kN/m>. Specific gravities are tabulated in the Appendix, Table 2.
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VISCOSITY OF A FLUID

The viscosity of a fluid is that property which determines the amount of its resistance to a shearing
force. Viscosity is due primarily to interaction between fluid molecules.

Referring to Fig. 1-1, consider two large, parallel plates a small distance y apart, the space between
the plates being filled with a fluid. To keep the upper plate moving at constant velocity U, it is found
that a constant force F must be applied. Thus there must exist a viscous interaction between plate and
fluid, manifested as a drag on the former and a shear force on the latter. The fluid in contact with the
upper plate will adhere to it and will move at velocity U, and the fluid in contact with the fixed plate will
have velocity zero. If distance y and velocity U are not too great, the velocity profile will be a straight
line. Experiments have shown that shear force F varies with the area of the plate A, with velocity U,
and inversely with distance y. Since by similar triangles, U/y = dV /dy, we have

o (AU _ 44V . F_t)ocdv
y dy A dy

where t = F/A = shear stress. If a proportionality constant x (mu), called the absolute (dynamic)
viscosity, is introduced,

dVv T shear stress

— —_— or = =
v & dV /dy rate of shear strain

dy 7)

It follows that the units of p are Pa-s or L'S}ﬁ. Fluids for which the proportionality of equation (7)

holds are called Newtonian fluids (see Problem 1.10).

Fig. 1-1

Another viscosity coefficient, the coefficient of kinematic viscosity, is defined as

absolute viscosity u
mass density p
i p=b o B . BE )
b v/ig v

kinematic viscosity v (nu) =

2 2

. m ft

The units of v are — or —.
S sec

Viscosities are reported in older handbooks in poises or stokeses (cgs units) and on occasion in
Saybolt seconds, from viscosimeter measurements. Conversions to the fps system are illustrated in
Problems 1.7 through 1.9. A few values of viscosities are given in Tables 1 and 2 of the Appendix.

Viscosities of liquids decrease with temperature increases but are not affected appreciably by pressure
changes. The absolute viscosity of gases increases with increase in temperature but is not appreciably
changed by changes in pressure. Since the specific weight of gases changes with pressure changes
(temperature constant), the kinematic viscosity varies inversely as the pressure.
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VAPOR PRESSURE

When evaporation takes place within an enclosed space, the partial pressure created by the vapor
molecules is called vapor pressure. Vapor pressures depend upon temperature and increase with it. See
Table 1 in the Appendix for values for water.

SURFACE TENSION

A molecule in the interior of a liquid is under attractive forces in all directions, and the vector sum
of these forces is zero. But a molecule at the surface of a liquid is acted on by a net inward cohesive
force that is perpendicular to the surface. Hence it requires work to move molecules to the surface
against this opposing force, and surface molecules have more energy than interior ones.

The surface tension o (sigma) of a liquid is the work that must be done to bring enough molecules
from inside the liquid to the surface to form one new unit area of that surface (J/m2 or ft-lb/ftz).
Equivalently, the energized surface molecules act as though they compose a stretched sheet, and

o =AF/AL ©)

where AF is the elastic force transverse to any length element AL in the surface. Definition (9) gives
the units N/m or Ib/ft. The value of surface tension of water with air is 0.0756 N/m at 0°C, or 0.00518
Ib/ft at 32°F. Table IC gives values of surface tension for other temperatures.

CAPILLARITY

Rise or fall of liquid in a capillary tube (or in porous media) is caused by surface tension and
depends on the relative magnitudes of the cohesion of the liquid and the adhesion of the liquid to the
walls of the containing vessel. Liquids rise in tubes they wet (adhesion > cohesion) and fall in tubes
they do not wet (cohesion > adhesion). Capillarity is important when using tubes smaller than about

2 inch (10 mm) in diameter. For tube diameters larger than % in (12 mm), capillary effects are negli-

8
gible.

Figure 1-2 illustrates capillary rise (or depression) in a tube, which is given approximately by

20 cos f
B o COS
yr

(10)

| |

i/ =)

T

h e
I N VY] IR R
——— - —— r — = EeteEsee —_——== == L,:F_ === =

h
(a) Water (b) Mercury

Fig. 1-2
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= height of capillary rise (or depression)
= surface tension

= specific weight of liquid

h
g
6@ = wetting angle (see Fig. 1-2)
v
»

radius of tube

If the tube is clean, @ is 0° for water and about 140° for mercury.

BULK MODULUS OF ELASTICITY (E)
The bulk modulus of elasticity (E) expresses the compressibility of a fluid. It is the ratio of the
change in unit pressure to the corresponding volume change per unit of volume.
dp
- —dv/v

Because a pressure increase, dp, results in a decrease in fractional volume, dv/v, the minus is inserted
to render E positive. Clearly, the units of E are those of pressure—Pa or Ib/in’.

(1)

ISOTHERMAL CONDITIONS

For a fixed temperature, the ideal gas law, equation (3) or (5), becomes

Pivi = paty and N _ P _ constant (12)
2 P2
Also,
bulk modulus E = p (13)

ADIABATIC OR ISENTROPIC CONDITIONS

If no heat is exchanged between the gas and its container, equations (/2) and (/3) are replaced by

k
pivy = pavj or (ﬂ) oy .- constant (14)
Y2 P2
Also,
T (k—1)/k
(%)
1 1
and
bulk modulus E = kp (16)

Here k is the ratio of the specific heat at constant pressure to the specific heat at constant volume.

PRESSURE DISTURBANCES

Pressure disturbances imposed on a fluid move in waves, at speed
c=+E/p 17)

For gases, the acoustic velocity is

¢ =kp/p = /kgRT (18)
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Solved Problems

Calculate the specific weight y, specific volume v, and density p of methane at 100°F and 120
psi absolute.

Solution:
From Table 1A in the Appendix, R = 96.3 ft/°R.
. . p 120 x 144 3
fi hty = —=———————— =0.320 Ib/ft
SPectlic WEIENLY = RT = 196.3)(460 + 100) :
0.320
density p = £ = =2 — 0.00994 slug/ft>
g 32.2
ific volum : : 101 ft¥/slu
v —— =
specific e Vs > = 0.00994 g

If 6 m® of oil weighs 47 kN, calculate its specific weight y, density p, and specific gravity.

Solution:
. . N 3
specific weight y = o 7.833 kN/m
7833 N/m’
density p = £ = —/"‘2 — 798 kg/m®
8 9.81 m/s

- 7.833 kN/m’

specific gravity = —2L — = 0.800

VYwater 9.79 kN/m3

At 90°F and 30.0 psi absolute the volume per unit weight of a certain gas was 11.4 ft*/lb.
Determine its gas constant R and the density p.

Solution:
Since y = %,
0 x 144)(11.4
R= YLT . % _ G0 04:01+ ;é ) 895 fi/°R
density p = g = % = é = m =0.00272 slug/fi®

(a) Find the change in volume of 1.00 ft® of water at 80°F when subjected to a pressure increase
of 300 psi.

(b) From the following test data determine the bulk modulus of elasticity of water: at 500 psi
the volume was 1.000 ft*, and at 3500 psi the volume was 0.990 ft>.

Solution:

(a) From Table IC in the Appendix, E at 80°F is 325,000 psi. Using formula (/7),

_vdp 1.00 x 300

_E X . 3
E 325,000 0:00692 1

dv =

(b)

dp 3500 — 500 .
E = — = — —
do/v ~ (0.990 — 1.000)/1.000 > X 10" psi
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1:5.

1.7.

At a great depth in the ocean, the pressure is 80 MPa. Assume that specific weight at the surface
is 10 kN/m® and the average bulk modulus of elasticity is 2.340 GPa. Find: (a) the change in
specific volume between the surface and that great depth, (b) the specific volume at that depth,
and (c) the specific weight at that depth.

Solution:
1 g 9.81 ™
=— =2 =" __ =98I x10*m’
(a) (vs)y - s 0% 10° 9.81 x m3/kg
E__
_dvx/l'x
0 x 10%) —0-
33405 (s D 2 W) =D
dus/(9.81 x 1074)
dvg = —0.335 x 107* m3/kg
(b) (v5)2 = (vg); +dvs = (9.81 —0.335) x 1074 =9475 x 10°* m3/kg
(c) y2 = g/ (vy), = 9.81/(9.475 x 10~%) = 10.35 kN/m?

A cylinder contains 12.5 ft* of air at 120°F and 40 psi absolute. The air is compressed to 2.50
ft*. (@) Assuming isothermal conditions, what is the pressure at the new volume, and what is
the bulk modulus of elasticity? (b) Assuming adiabatic conditions, what is the final pressure and
temperature, and what is the bulk modulus of elasticity?

Solution:
(a) For isothermal conditions, pjv; = pav2
Then (40 x 144)(12.5) = (p2 x 144)(2.50) and p> = 200 psi absolute
The bulk modulus E = p = 200 psi.

(b) For adiabatic conditions, pjv’ = povA, and Table 1A in the Appendix gives k = 1.40.
1 2
Then (40 x 144)(12.5)"% = (py x 144)(2.50)'*"  and  p> = 381 psi absolute

The final temperature is obtained by using equation (/5):
L (m (k—1)/k e e 0.40/1.40 ok e
T \p " 4604120\ 40 ‘ o -

The bulk modulus E = kp = 1.40 x 381 = 533 psi.

From the International Critical Tables, the viscosity of water at 20°C (68°F) is 1.008 cp (cen-
tipoises). (@) Compute the absolute viscosity in Ib-sec/ft>. (b) If the specific gravity at 20°C is
0.998, compute the kinematic viscosity in ft*/sec.

Solution:
Using 1 poise = | dyne-sec/cm?, | Ib = 444,800 dynes, and | ft = 30.48 cm, we obtain

Ib-sec 444,800 dyne-sec
fi2  (30.48 cm)?

= 478.8 poises

1.008 x 10~ poise — 10_Slb-s’ec

" (478.8 poise)/ (Ib-sec/f) i

(a) 7



