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Preface

Probability and statistics are now taught widely in schools and are
integral parts of many O-level and A-level syllabuses. Consequently the
attitudes of universities towards these subjects have changed over the last
few years and, at many universities, first-year mathematics students learn
material which was previously taught in the third year only. This text is
based upon first and second year courses in probability theory which are
given at the Universities of Bristol and Oxford.

Broadly speaking we cover the usual material, but we hope that our
account will have certain special attractions for the reader and we shall
say what these may be in a moment. The first eight chapters form a
course in basic probability, being an account of events, random variables,
and distributions—we treat discrete and continuous random variables
separately—together with simple versions of the law of large numbers
and the central limit theorem. There is an account of moment generating
functions and their applications. The last three chapters are about
branching processes, random walks, and continuous-time random pro-
cesses such as the Poisson process; we hope that these chapters are
adequate at this level and are suitable appetizers for courses in applied
probability and random processes. We have deliberately omitted various
topics which are crucial in more advanced treatments, such as the theory
of Markov chains, and we hope that most critics will agree with such
decisions. In the case of Markov chains, we could not justify to ourselves
the space required to teach more than mere fragments of the theory. On
the other hand we have included a brief treatment of characteristic
functions in two optional sections for the more advanced reader.

We have divided the text into three sections: (A) Probability, (B)
Further Probability, and (C) Random Processes. In doing so we hope to
indicate two things. First, the probability in Part A seems to us to be core
material for first-year students, whereas the material in Part B is
somewhat more difficult. Secondly, although random processes are
collected together in the final three chapters, they may well be introduced
much earlier in the course. The chapters on branching processes and
random walks might well come after Chapter 5, and the chapter on
continuous-time processes after Chapter 6.

We have two major aims: to be concise and to be honest about
mathematical rigour. Some will say that this book reads like a set of
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lecture notes. We would not regard this as entirgly unfair; indeed a
principal reason for writing it was that we believe that most students
benefit more from possessing a compact account of the subject in 200
printed pages or so (at a suitable price) than a diffuse‘account of 400
pages. Most undergraduates learn probability theory by attending lec-
tures, at which they normally take copious and occasionally incorrect
notes; they may also attend tutorials and classes. Few are the under-
graduates who learn probability in private by relying on a textbook as the
sole, or even principal, source of inspiration and learning. Although
some will say that this book is too difficult, it is the case that first-year
students at many universities learn some quite difficult things, such as
axiomatic systems in algebra and £/ analysis, and we doubt if much of
the material covered here is inherently more challenging than these.
Also, lecturers and tutors have certain advantages over authors—they
have the power to hear and speak to their audiences—and these
advantages should help them to explain the harder things to their
students.

Here are a few words about our approach to rigour. It is clearly
impossible to prove everything with complete rigour at this level; on the
other hand it is important that students should understand why rigour is
necessary. We try to be rigorous where possible, and elsewhere we go to
some lengths to point out how and where we skate over thin ice. This can
occasionally be tedious.

Most sections finish with a few exercises; these are usually completely
routine, and students should do them as a matter of course. Each chapter
finishes with a collection of problems; these are often much harder than
the exercises, and include many parts of questions taken from examina-
tion papers set in Bristol and Oxford; we acknowledge permission from
Bristol University and from Oxford University Press in this regard. There
is a final chapter containing some hints for solving the problems.
Problems marked with an asterisk may be rather difficult.

We hope that the remaining mistakes and misprints are not held
against us too much, and that they do not pose overmuch of a hazard to
the reader. Only with the kind help of our students have we reduced
them to the present level. Finally we thank Rhoda Rees for typing the
manuscript with such skill, speed and good cheer.

Bristol and Oxford G.G.
July 1985 7 D. W.
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A. Basic Probability "

1

Events and probabilities

1.1

Experiments with chance

Many actions have outcomes which are largely unpredictable in
advance—tossing a coin and throwing a dart are simple examples.
Probability theory is about such actions and their consequences. The
mathematical theory starts with the idea of an experiment (or trial),
being a course of action whose consequence is not predetermined;
this experiment is reformulated as a mathematical object called a
probability space. In broad terms the probability space corresponding
to a given experiment comprises three items:
(i) the set of all possible outcomes of the experiment,
(if) a list of all the events which may possibly occur as consequences
of the experiment,
(iii) an assessment of the likelihoods of these events.
For example, if the experiment is the throwing of a fair six-sided die,
then the probability space contains
(i) the set {1,2,3,4,5, 6} of possible outcomes,
(ii) a list of events such as ‘the resuit is 3’,
‘the result is at least 4’,
‘the result is a prime number’,
(iii) the assessment that each number 1,2, 3,4, 5, 6 is equally likely
to be the result of the throw.
Given any experiment involving chance, there is a corresponding
probability space, and the study of such spaces is called probability
theory. Next, we shall see how to construct such spaces more
explicitly.

1.2 Qutcomes and events

We use the letter & to denote a particular experiment whose outcome
is not completely predetermined. The first thing which we do is to
make a list of all the possible cutcomes of &; the set of all such
possible outcomes is called the sample space of € and we usually
denote it by L. The Greek letter @ denotes a typical member of 2,
and we call each member w of Q an elementary event.

If, for example, & is the experiment of throwing a fair die once,
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(1)

then 2={1,2,3,4,5, 6}. There are many questions which we may
wish to ask about the actual outcome of this experiment (questions
such as ‘is the outcome a prime number?’), and all such questions
may be rewritten in terms of subsets of £ (the previous question
becomes ‘does the outcome lie in the subset {2,3.5} of 27°). The
second thing which we do is to make a list of all the events which are
interesting to us; this list takes the form of a collection of subsets of -
Q, each such subset A representing the event ‘the outcome of € lies
in A’. Thus we ask ‘which possible events are interesting to us’ and
then We make a list of the corresponding subsets of €. This
relationship between events and subsefs is very natural, especially
because two or more events combine with each other in just the same
way as the corresponding subsets combine; for example, if A and B
are subsets of €2 then

the set A U B corresponds to the event ‘either A or B occurs’,

the set A N B corresponds to the event ‘both A and B occur’,

the set £2\A correspondst to the event ‘A does not occur’,
where we say that a subset C of € ‘occurs’ whencvy,r the outcome of
€ lies in C. Thus all set-theoretic statements and combinations may
be interpreted in terms of events; for example, the formula

Q\(A N B) = (R\A) U (Q\B)

may be read as ‘if A and B do not both occur, then either A does not
occur or B does not occur’. In a similar way, if A,, A,, ... are events
then the sets |_J/., A; and ()=, A, represent the events A, occurs, for
some {’ and ‘A; occurs, for every i’, respectively.

Thus we write down a collection = {A,:i e} of subsets of Q
which are interesting to us; each A € & is called an event. In simple
cases, such as the die-throwing example above, we usually take F to
be the set of all subsets of Q (called the power set of @), but for
reasons which may be appreciated later there are many circumstances
in which we take ¥ to be a very much smaller collection than the
entire power set. In all cases we demand a certain consistency of #,
in the following sense. If A, B, C, . .. € ¥ then we may reasonably be
interested also in the events ‘A does not occur’ and ‘at least one of
A, B, C, ... occurs’. With this in mind we require that ¥ satisfy the
following definition.

The collection F of subsets of the sample space €2 is called an event
space if

% is non-empty,
t For any subset A of £, the complement of A is the set of all members of §2 which are

not members of A We denote the complement of A by either £2\A or A®, depending
on the context
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Probabilities 5

if Ae % then Q\A € %,
if A, Ay, ...cFthenJA %
i=1

We speak of an event space F as being ‘closed under the
operations of taking complements and countable unions’. An ele-
mentary consequence of axioms (1)—(3) is that an event space F must
contain the empty set & and the whole set €. This holds since .#
contains some set A (from (1)), and hence % contains \A (from
(2)), giving also that # contains the union = A U (£2\A) together
with the complement £\Q =& of this last set.

Here are some examples of pairs (€2, #) of sample spaces and
event spaces.

€ is any set and F is the power setof £. a

Qs any set and F = {J, A, Q\A, 2} where A is a given subset of
Q. O

2={1,2,3,4,5, 6} and Z is the collection
2, (1,2}, {3,4), {5,6}, {1,2,3,4}, {3,4,5,6}, {1,2,5,6}, @

of subsets of £2. This event space is unlikely to arise naturally in
practice. O

Exercises In these exercises, £ is a set and Z is an event space of subsets of Q.

1. If A, Be %, show that AN B e %. )

2. The difference A\B of two subsets A and B of £ is the set AN (2\B) of
all points of € which are in A but not in B. Show that if A, B € %, then
A\Be .

3. The symmetric difference A/\AB of two subsets A and B of Q is defined to
be the set of points of £ which are in either A or B but not in both. If
A, Be #, show that AAB e 7.

4. If Ay, Ay, ..., A, €% and k is a positive integer, show that the set of
poiits in £ which belong to exactly k of the A’s belongs to F (the
previous exercise is the case when m =2 and k =1).

5. Show that if £ is a finite set then % contains an even number of subsets
of .

1.3 Probabilities

~

From our experiment &, we have so far constructed a sample space
€2 and an event space ¥ associated with &, but there has been no
mention yet of probabilities. The third thing which we do is to
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(8)

)

Example
10

allocate probabilities to each event in %, writing P(A) for the

probability of the event A. We shall assume that this can be done in

such a way that the probability function P satisfies certain intuitively
attractive conditions:

(i) each event A in the event space should have a probability P(A)
which lies between 0 and 1;

(ii) the event 2, that ‘something happens’, should have probability
1, and the event J, that ‘nothing happens’, should have
probability 0;

(iii) if A and B are disjoint events (so that ANB=(J) then
P(A U B)=P(A) + P(B).

We collect these conditions into a formal definition as foHows.
A mapping P: F— R is called a probability measure on (2, F) ii

P(A)=0 forall Ae¥,
P(£2)=1 and P(@)=0,

if A, A,, ... are disjoint events in & (so that A; N A; = J whenever
i #j) then

P(ig)l A,) - 2:31 P(A).

We emphasize that a probability measure P on (£, F) is defined
only on those subsets of € which lie in # The second part of
condition (8) is superfluous in the above definition; to see this, note
that & and  are disjoint events with union 2 U = £ and so

P(Q) =P(2U D) =P(2) + P(QD) by (9).

Condition (9) requires that the probability of the union of a
countablet collection of non-overlapping sets is the sum of the
individual probabilities.

Let 2 be a set and A be a proper subset of £ (so that A + &, Q). If
F is the event space {J, A, \A, 2} then all probablhty measures
on (£, ¥) have the form

P(2) =0, P(A)=p,
P(S2\A)=1-p, P(Q2)=1,
for some p satisfying 0=p < 1. O

1A set S is called countable if it may be put in one-one correspondence with a subset
of the natural numbers {1,2,3,...}.
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Example

Exercises

Probability spaces 7

Let Q= {w;, w,, ..., Wy} be a finite set of exactly N points, and let
F be the power set of £. It is easy to check that the function P
defined byt

P(A)=%,|A| for Ae F
is a probability measure on (Q, ¥). O

6. Let py, P2y, ..., P~ bE nOn—riegative numbers such that pitpa+ -+
pn =1, and let Q = {@,, 0,, ..., oy}, with F the power set of £, as in
Example 11 above. Show that the function Q given by

Q(A)= Z pi for Ae Z,

e A

is a probability measure on (£, ). Is Q a probability measure if F is
not the power set of £ but merely some event space of subsets of €27

1.4 Probability spacés

(12)

Proof

(13)

Proof

(14)

We now combine the previous ideas and define a probability space to
be a triple (2, ¥, P) of objects such that

(i) Qis a set,

(ii) & is an event space of subsets of £,
(iii) P is a probability measure on (£, %).
There are many elementary consequences of the axioms which
underlie this definition, and we describe some of these. Let (22, &, P)
be a probability space.

If A, B € % thenf A\Be %.

The complement of A\B equals (£2\A) U B, which is the union of
events and is therefore an event. Hence A\B is an event, by (2). O

If A, A,, ... Fthen (A e
i=1

The complement of ()2, A, equals [_J;~, (£2\A,) which is the union of
the complements *of events and is therefore an -event. Hence the
intersection of the A’s is an event also, as before. O

If A€ % then P(A) + P(2\A) = 1.

1 The cardinality |A| of a skt A is the number of points in A.
1 A\B = AN (£2\B) is the set of points in A which are not in B.
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Proof A and Q\A are disjoint events with union £, and so
1=P(Q) =P(A) + P(Q\A). O
(15) If A, B e % then P(AUB)+ P(ANB)=P(A) +P(B).
Proof The set A is the union of the disjoint sets A\B and A N B, and hence
P(A) = P(A\B) + P(AN B) by (9).

A similar remark holds for the set B, giving that
P(A) + P(B) = P(A\B) + 2P(AN B) + P(B\A)
=P((A\B)U(ANB)U(B\A))+P(AN B) by (9)

=P(AUB) + P(AN B). O
(16) If A, Be # and A c B then P(A) =P(B).
Proof P(B)=P(A) + P(B\A) = P(A). O

It is often useful to draw a Venn diagram when working with
probabilities. For example, to show the formula in (15) above we
might draw the diagram in Fig. 1.1, and note that the probability of
A U B is the sum of P(A) and P(B) minus P(A N B), since this latter
probability is counted twice in the simple sum P(A) + P(B).

Exercises In these exercises (£2, %, P) is a probabiiity space.
7. If A, B € #, show that

P(A\B) =P(A) - P(A N B).
8. If A, B, C e #, show that =T
P(AUBUC)=P(A)+P(B)+P(C)-P(ANB)
-P(ANC)-P(BNC)+P(ANBNC).

Fig. 1.1 A Venn diagram which illustrates the fact that P(A U B) = P(A) +
P(B)—-P(ANB)
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9. Let A, B, C be three events such that
P(A)=‘|’l-)- P(B)= l?ﬁl P(C)=l—66-
P(ANB) =1, P(BNC)=1, P(ANC)= 3,
PANBNC)=14.

By drawing a Venn diagram or otherwise, find the probability that
exactly two of the events A, B, C occur.

10. A fair coin is tossed 10 times (so that heads appears with probability } at
each toss). Describe the appropriate probability space in-detail for the
two cases when
(i) the outcome of every toss is of interest,

(11) only the total number of tails is of interest.
In the first case your event space should have 2°" events, but in the
second case it should have only 2'' events.

1.5 Discrete sample spaces

Example
17

Example
18

Let € be an experiment with probability space (£, %, P). The
structure of this space depends greatly upon whether £2is a countable
set (that is, a finite or countably infinite set) or an uncountable set. If
£ is a countable set then we normally take % to be the set of all
subsets of €, for the following reason. Suppose that Q=
{w,, w,, ...} and, for each w € 2, we are interested in whether or
not this given w is the actual outcome of €; then we require that each
singleton set {w} belongs to #. Let Ac Q. Then A is countable
(since £2 is countable) and so A may bc expressed as the union of the
countably many w’s which belong to A, giving that A =, .4 {w} €
F by (3). The probability P(A) of the event A is determined by the
collection {P({@}): w € 2} of probabilities since, by (9),

P(A)= 2 P({w)}).

weA

We ;Jsually write P(@) for the probability P({w}) of an event
containing only one point.in £.

Equiprobable outcomes. If Q= {w,, w,, ..., wy} and P(w,) = P(w;)
for all i and j, then P(w)=N"" for all w € , and P(A) =|A|/N for
all A c Q. O

Random integers. There are “intuitively-clear” statements which are
without meaning in probability theory, and here is an example: if we
pick a positive integer at random, then it is an even integer with
probability 3. Interpreting “at random” to mean that each positive
integer is equally likely to be picked, then this experiment would



