阳光假期 八年级数学

锦阳 主编

四川师范大学电子出版社

主编: 锦阳

八年级数学

公复习篇——温松 六期末篇——冲刺 公假期篇——提升 六项习篇——知新

阳光假期——八年级数学

主 编 锦 阳

出版人 向万成

责任编辑 辜健刚

出版发行 四川师大电子出版社有限公司

社 址 四川省成都市锦江区静安路 5 号

邮政编码 610066

电 话 028-84768005(总编室) 028-84769668(发行部)

网 址 epress.sicnu.edu.cn

电子邮箱 ep@sicnu.edu.cn

光盘生产 四川省蓥山数码科技有限公司

文本印刷 重庆市骏煌印务有限公司

开 本 850mm×1168mm

印 张 6

字 数 240 千字

版 次 2014年5月第一版第一次印刷

印 数 5001-10000 册

版 号 ISBN 978-7-89449-308-8

定 价 22.00元 (1光盘+本册)

如发生印装质量问题,读者请他本社发行部联系

■ 版权所有 侵权必究 ■

目录

第一部分 期末复习

	八年级下册		
	第十六章	二次根式	(1)
	第十七章	勾股定理	(5)
	第十八章	平行四边形	(9)
	第十九章	一次函数((15)
	第二十章	数据的分析((20)
第二	二部分	假期提升	
	八年级上册	册专题训练	(25)
	第十一章	三角形	(25)
	第十二章	全等三角形	(28)
	第十三章	轴对称	(31)
	第十四章	整式的乘除(出)因式分解	(33)
	第十五章	分式	(35)
	八年级下册	·····································	(38)
	专题一 二	二次根式的运算	(38)
	专题二 禾	到19.勾股定理解决折叠问题 ······	(39)
	专题三 [J边形中的运动问题 ·····	(40)
	专题四 习	尽一次函数的关系式	(41)
	专题五 -	-次函数的应19	(42)

第三部分 下期预习

第二十一章 一元二次方程			
21.1 一元二次方程			
21.2 一元二次方程的解法 (47			
21.2.1 直接开平方法 (47			
21.2.2 因式分解法(48)			
21.2.3 配方法			
21.2.4 公式法			
21.2.5 根的判别式			
21.2.6 根比系数的关系 (55			
21.3 实践比探索 (56			
21.3.1 列一元二次方程解应19.题(一) (56			
21.3.2 列一元二次方程解应19.题(二)(58			
第二十二章 二次函数			
22.1 二次函数 (60			
22.2 二次函数的图象化性质(62)			
22.2.1 二次函数 y=ax² 的图象化性质(62			
22.2.2 二次函数 y=ax²+k 的图象化)性质(64			
22.2.3 二次函数 y=a(x-h) ² 的图象化)性质			
22.2.4 二次函数 y=a(x-h) ² +k 的图象化)性质			
22.2.5 二次函数 y=ax²+bx+c(a≠0)的图象(c)性质(70			
22.2.6 求二次函数的关系式(72			
22.3 实践比探索 (74			
期末测试卷(一)			
期末测试卷(二)			
参考答案(85			

期末复罚

八年级下册

第十六章 二次根式

1. 二次根式的有关概念

- (1)二次根式的定义
- 一般地,我们把形如 $\sqrt{a}(a \ge 0)$ 的式子叫做二次 根式.
 - (2)最简二次根式
 - 若二次根式满足条件:
 - ①被开方数不含分母:
 - ②被开方数中不含能开得尽方的因数或因式.
 - 我们把这样的二次根式,叫做最简二次根式.
 - (3)同类二次根式

几个二次根式化简成最简二次根式后被开方数相 同,这几个二次根式就叫做同类二次根式.

2. 二次根式的性质

$$(1)(\sqrt{a})^2 = a(a \ge 0)$$

$$(2)\sqrt{a^{2}} = |a| = \begin{cases} a(a \ge 0) \\ -a(a \le 0) \end{cases}$$

$$(3)\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}(a \geqslant 0, b \geqslant 0)$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}(a \geqslant 0, b > 0)$$

3. 二次根式的运算

(1)二次根式的乘法、除法

$$\bigcirc \sqrt{a} \cdot \sqrt{b} = \sqrt{ab} (a \geqslant 0, b \geqslant 0)$$

$$2\sqrt[a]{\frac{\sqrt{a}}{\sqrt{b}}} = \sqrt{\frac{a}{b}}(a \ge 0, b > 0)$$

- (2)二次根式的加减法则
- 二次根式加减时,可以先将二次根式化成最简二次 根式,再将同类二次根式进行合并.
- (3)二次根式的混合运算可类比有理数的混合运算 进行学习,充分利用有理数的运算律及乘法公式,还可 借助有理式运算中的因式分解、通分、约分等手段进行 运算.
- (4)二次根式混合运算的结果可能是有理式,也可 能是根式,如果结果是根式的,一定要化成最简二次 根式.

类型一 二次根式的概念及性质

【训练 1】 (1)(2013・娄底)式子 $\frac{\sqrt{2x+1}}{r-1}$ 有意义的

x 的取值范围是

A.
$$x \geqslant -\frac{1}{2} \mathbb{E} \ x \neq 1$$

B.
$$x \neq 1$$

C.
$$x \ge -\frac{1}{2}$$

C.
$$x \ge -\frac{1}{2}$$
 D. $x > -\frac{1}{2} \pm x \ne 1$

(2)若
$$\sqrt{(2a-1)^2}=1-2a$$
,则

A.
$$a < \frac{1}{2}$$

B.
$$a \le \frac{1}{2}$$

八年级 RJ 数学

C.
$$a > \frac{1}{2}$$

D.
$$a \ge \frac{1}{2}$$

(3)已知 a,b,c 在数轴上的位置如图所示,

化简
$$\sqrt{a^2} + \sqrt{(b+c)^2} + \sqrt{(a-c)^2} - |a+b|$$
.

$(5)3\sqrt{8}(\sqrt{54}-5\sqrt{2}-2\sqrt{6});$

类型二 二次根式的运算

【训练2】 计算.

$$(1)a^2 \sqrt{ab} \cdot b \sqrt{\frac{b}{a}} \div \sqrt{\frac{9b^2}{a}};$$

(2)2
$$a\sqrt{3ab^2}+\frac{b}{6}\sqrt{27a^3}+2ab\sqrt{\frac{3}{4}}a(b\geqslant 0)$$
;

$$(3)\frac{1}{2}\times(\sqrt{3}-1)^2+\frac{1}{2^{-1}}+\sqrt{3}-(\frac{\sqrt{2}}{2})^{-1};$$

(4)
$$\sqrt{18} - \frac{9}{2} - \frac{\sqrt{3} + \sqrt{6}}{\sqrt{3}} + (\sqrt{3} - 2)^{\circ} + \sqrt{(1 - \sqrt{2})^{2}};$$
 $\frac{\sqrt{5} + 1}{2}, b = \frac{\sqrt{5} - 1}{2};$

(6)
$$(\sqrt{2} - \sqrt{5} + \sqrt{10})(\sqrt{2} + \sqrt{5} - \sqrt{10});$$

$$(7)(\sqrt{15}+\sqrt{3}-\sqrt{5})^2-(\sqrt{15}-\sqrt{3}+\sqrt{5})^2$$
.

类型三 求与二次根式有关的代数式的值

【训练3】 先化简,再求值:

(1)(2013・荆门)
$$\frac{9-a^2}{a^2+4a+4}$$
÷ $\frac{3-a}{a+2}$ ・ $\frac{1}{a+3}$,其中 $a=\sqrt{5}-2$;

(2)(2013 · 黄石)
$$\frac{1}{a+b}$$
+ $\frac{1}{b}$ + $\frac{b}{a(a+b)}$,其中 $a = \frac{\sqrt{5}+1}{2}$, $b = \frac{\sqrt{5}-1}{2}$;

***** 第一部分 期末复习

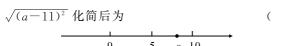
(3)已知
$$a = \frac{1}{\sqrt{2}-1}, b = \frac{1}{\sqrt{2}+1},$$

求
$$\sqrt{ab}(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}})$$
的值.

一、选择题

- 1. 下列代数式中,一定是二次根式的是
 - A. $\sqrt{a+3}$

 $C.\sqrt{4}$


- 2. 若 $2\sqrt{\frac{2-a}{6}}$ 与 $6\sqrt{\frac{2a-3}{4}}$ 可以合并成一个二次根式,

则a的值是

- A. $\frac{20}{12}$

- B. $\frac{5}{2}$ C. $\frac{13}{8}$ D. $\frac{15}{8}$
- 3. 已知 $y = \sqrt{2x-5} + \sqrt{5-2x} 3$,则 2xy 的值为

- B. 15
- C. $-\frac{15}{2}$ D. $\frac{15}{2}$
- 4. 实数 a 在数轴上的位置如图所示,则 $\sqrt{(a-4)^2}$ +

A. 7

B. -7

- C. 2a-15
- D. 无法确定
- 5. 下列计算正确的是

A. 6
$$\sqrt{\frac{a}{2}} = \sqrt{3a}$$

B.
$$-2\sqrt{3} = \sqrt{(-2)^2 \times 3}$$

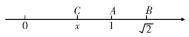
C.
$$a^2 \sqrt{\frac{1}{a}} = \sqrt{a}$$

D.
$$(a-1)\sqrt{\frac{1}{1-a}} = -\sqrt{(1-a)^2 \cdot \frac{1}{1-a}} = -\sqrt{1-a}(a<1)$$

- 6. 设 $\sqrt{2} = a$, $\sqrt{3} = b$,用含 a,b的式子表示 $\sqrt{0.54}$,下列表 示正确的是
 - A. $\frac{3ab}{10}$
- B. 3ab C. $\frac{a^2b^2}{10}$ D. $\frac{a^3b}{10}$

- 7. 等腰三角形两条边长分别为 $\sqrt{8}$ 和 $5\sqrt{2}$,那么这个三角 形的周长等于
 - A. $9\sqrt{2}$

- B. $12\sqrt{2}$
- C. $9\sqrt{2}$ 或 $12\sqrt{2}$
- D. $4+5\sqrt{2}$ 或 $2\sqrt{2}+10$
- 8. (2013 佛山)化简 $\sqrt{2} \div (\sqrt{2}-1)$ 的结果是


- A. $2\sqrt{2}-1$
- B. $2 \sqrt{2}$

C. $1 - \sqrt{2}$

- D. $2 + \sqrt{2}$
- 9. 代数式 $\sqrt{(1-a)^2} + \sqrt{(3-a)^2}$ 的值为常数 2,则 a 的 取值范围是
 - A. $a \ge 3$

- B. *a*≤1
- C. 1≤*a*≤3
- D. a = 1 或 a = 3
- 10. 如图,数轴上与 $1,\sqrt{2}$ 对应的点分别为 A,B,点 B 关 于点 A 的对称点为 C,设点 C 表示的数为 x,则 |x-

$$\sqrt{2}|+\frac{2}{x}\mathcal{H}$$

- B. $2\sqrt{2}$ C. $3\sqrt{2}$

二. 填空题

- 11. $(-2\sqrt{5})^2 = ; -\sqrt{(-0.01)^2} = ;$ $\sqrt{(3-\pi)^2}$
- 12. 在实数范围内分解因式: $4x^2-7=$.
- 13. 若等式 $\sqrt{4-x^2} = \sqrt{x+2} \cdot \sqrt{2-x}$ 成立,则 x 应满足
- 14. 比较大小:
 - (1)7 $\sqrt{11}$ $11\sqrt{7}$;

$$(2)\frac{2}{\sqrt{5}-\sqrt{3}}$$
 $\frac{1}{2-\sqrt{3}}$;

(3)
$$\sqrt{15} - \sqrt{14}$$
 $\sqrt{14} - \sqrt{13}$.

- 15. 已知 $a-b=\sqrt{5}+\sqrt{3}$, $b-c=\sqrt{5}-\sqrt{3}$, 则 $a^2+b^2+c^2$ ab-bc-ca= .
- 16. 已知 $\sqrt{a}(a-\sqrt{3})<0$,若 b=2-a,则 b 的取值范围是
- 17. 若 9+ $\sqrt{13}$ 与 9- $\sqrt{13}$ 的小数部分分别是 a 与 b,则 ab-4a+3b-2=
- 18. 一个直角三角形两直角边长分别为 $\sqrt{20}$ cm 和 $\sqrt{12}$ cm, 则这个直角三角形斜边上的高为 cm.

20. 已知:偶数 x 使等式 $\sqrt{\frac{2x-6}{1-x}} = \frac{\sqrt{6-2x}}{\sqrt{x-1}}$ 成立,于是关于x的方程 2mx-1=x+5中m的值为_____.

三、解答题

21. 计算下列各题,

$$(1)3\sqrt{2\frac{2}{3}}\times(-\frac{1}{8}\sqrt{15})\div\frac{1}{2}\sqrt{\frac{2}{5}};$$

(2)
$$\left(\sqrt{24} - \sqrt{0.5} + 2\sqrt{\frac{2}{3}}\right) - \left(\sqrt{\frac{1}{8}} - \sqrt{6}\right);$$

$$(3)\frac{\sqrt{2}}{2}(2\sqrt{12}+4\sqrt{\frac{1}{8}}-3\sqrt{48});$$

$$(4)(\sqrt{3}+\sqrt{2})^2-(\sqrt{3}-\sqrt{2})^2+(\sqrt{5}+\sqrt{6})^{2009} \cdot (\sqrt{5}-\sqrt{6})^{2010}.$$

22. 设
$$\triangle$$
ABC 的三边长为 a 、 b 、 c ,试化简
$$\sqrt{(a+b+c)^2} + \sqrt{(a-b-c)^2} + \sqrt{(b-a-c)^2} - \sqrt{(c-b-a)^2}$$

23. 化简后求值.

已知
$$m=\frac{1}{2+\sqrt{3}}$$
,求 $\frac{1-2m+m^2}{m-1}-\frac{\sqrt{m^2-2m+1}}{m^2-m}$ 的值.

24. 对于题目"化简求值: $\frac{1}{a} + \sqrt{\frac{1}{a^2} + a^2 - 2}$. 其中 $a = \frac{1}{5}$ ",甲、乙两人的解答不同.

甲的解答是:
$$\frac{1}{a} + \sqrt{\frac{1}{a^2} + a^2 - 2} = \frac{1}{a} + \sqrt{(a - \frac{1}{a})^2} = \frac{1}{a} + a - \frac{1}{a} = a = \frac{1}{5}$$
.

乙的解答是:
$$\frac{1}{a} + \sqrt{\frac{1}{a^2} + a^2 - 2} = \frac{1}{a} + \sqrt{(a - \frac{1}{a})^2} = \frac{1}{a} + \frac{1}{a} - a = \frac{2}{a} - a = \frac{49}{5}.$$

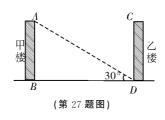
谁的解答是错误的?为什么?

25.解方程(组).

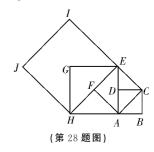
(1)
$$\sqrt{12}x + \sqrt{6} = 6 + \sqrt{3}x$$
;

(2)
$$\begin{cases} \sqrt{2}x - \sqrt{3}y = \sqrt{2} + \sqrt{3}, \\ \sqrt{3}x - \sqrt{2}y = \sqrt{3} + \sqrt{2}. \end{cases}$$

*★★★★ 第一部分 期末复习


26. 观察下列计算:

$$\frac{1}{\sqrt{2}+1} = \frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)} = \sqrt{2}-1,$$


$$\frac{1}{\sqrt{3}-\sqrt{2}} = \frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})} = \sqrt{3}-\sqrt{2}\dots$$

$$(\frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}+\sqrt{2}} + \frac{1}{\sqrt{4}+\sqrt{3}} + \dots + \frac{1}{\sqrt{2011}+\sqrt{2010}})(\sqrt{2011}+1)$$

- 27. 如图,甲楼在乙楼的南面,它们的设计高度是若干层,每层高均为3米,冬天太阳光与水平面的夹角为30°.
 - (1)若要求甲楼和乙楼的设计高度均为 6 层,且冬天 甲楼的影子不能落在乙楼上,那么建筑时两楼之 间的距离 BD 至少为多少米(保留根号)?
 - (2)由于受空间的限制,甲楼到乙楼的距离 *BD*=21 米,若仍要求冬天甲楼的影子不能落到乙楼上,那么设计甲楼时,最高建几层?

- 28. 如图,设四边形 *ABCD* 是边长为 1 的正方形,以对角 线 *AC* 为边作第二个正方形 *ACEF*,再以对角线 *AE* 为边作第三个正方形 *AEGH*,如此下去……
 - (1)记正方形 ABCD 的边长 $a_1 = 1$,按上述方法所作的正方形的边长依次为 a_2 , a_3 …, a_n , 求出 a_2 , a_3 , a_4 的值.
 - (2)计算: $a_1 + a_2 + a_3 + \cdots + a_8$ 的值.

第十七章 勾股定理

1. 勾股定理

直角三角形中,两直角边的平方和等于斜边的平方.设 $\triangle ABC$ 中, $\angle C=90^\circ$,BC=a,CA=b,AB=c,于是: $c=\sqrt{a^2+b^2}$, $b=\sqrt{c^2-a^2}$, $a=\sqrt{c^2-b^2}$.

2. 勾股定理的逆定理

如果一个三角形的三边 $a \times b \times c$ 满足 $a^2 + b^2 = c^2$,那 么这个三角形为直角三角形.

3. 勾股数

三个正整数,若两较小数的平方和等于最大数的平方,则称这三个数为一组勾股数.

4. 空间图形的最短路线问题

(1)立体图形的侧面为平面:①将欲求两点间最短

路程的两点所在平面展开在同一平面 内;②连结这两点;③在直角三角形中 ^A· 用勾股定理求出该距离;④比较所有可 ^c 能的这种距离选最小值作答,如图,在 ^A

长方体 $ABCD-A_1B_1C_1D_1$ 中,从点 A 到点 C_1 的最短路线长是 $\sqrt{a^2+(b+c)^2}$, $\sqrt{b^2+(a+c)^2}$, $\sqrt{c^2+(a+b)^2}$ 中的最小值.

(2)立体图形的侧面为曲面:①将欲求两点间最短路程的两点(一般而论)所在最小的曲面展开在平面内;②连结这两点;③在直角三角形中用勾股定理求出该距离;④作答.

5. 平面图形中最短路线问题

①作出已知两点中一点关于某相关直线的对称点; ②连结另一点和对称点;③在直角三角形中用勾股定理 求出②中线段的长;④作答.

类型一 利用勾股定理进行计算

【训练 1】 在 $\triangle ABC$ 中, $\angle C=90^{\circ}$.

- (1)若 a=3,b=4,则 c= ;
- (2)若 a=6,c=10,则 b=
- (3) 若 c = 34, a : b = 8 : 15, 则 a =

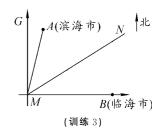
b=

类型二 利用勾股定理解决最短距离问题

【训练 2】 如图,圆柱形玻璃杯,高为12 cm,底面周长为18 cm,蚂蚁4在杯内离杯底4 cm的点 C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm 与蜂蜜相对的点

A 处,则蚂蚁到达蜂蜜的最短距离为

1处,则蚂蚁到达蜂蛋的取湿起离为_____ct


类型三 利用勾股定理解决实际问题

【训练 3】 如图,在海面上产生了一股强台风,台风中心(记为点 M)位于滨海市(记作点 A)的南偏西 15°, 距离为 74 千米处,且位于临海市(记作点 B)的正西方向 80 千米处,台风中心正以 72 千米/时的速度沿北偏东 60°的方向移动(MN 方向,假设台风在移动过程中的风力保持不变),距离台风中心 50 千米的圆形区域内均会 受到此次强台风的影响.

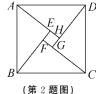
(1)滨海市、临海市是否会受到此次台风的影响?

请说明理由;

(2)若受到此次台风影响,该城市受到台风影响的 持续时间是多少小时?

一、选择题

1. 下列命题中,其中正确的命题个数为 () ①Rt $\triangle ABC$ 中,已知两边长分别为 3 和 4,则第三边长为 5;②有一个内角与其他两个内角的和相等的三角形是直角三角形;③三角形的三边分别为 a,b,c,若 $a^2+c^2=b^2$,则 $\angle C=90^\circ$;④在 $\triangle ABC$ 中, $\angle A: \angle B:$ $\angle C=1:5:6$,则 $\triangle ABC$ 是直角三角形.


A. 1 个

B. 2 个

C.3 个

D. 4 个

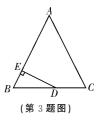
2. 如图,由 4 个全等的直角三角形构成 A 的正方形 ABCD 的面积为 25 cm 2 ,若 $^{AE=3}$ cm,则正方形 EFGH 的面积为

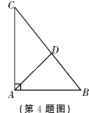
A. 4 cm²

B. 2 cm²

C. 1 cm²

D. 3 cm²

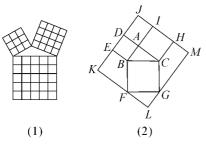

3. 如图,在 $\triangle ABC$ 中,AB = AC = 13, BC = 10,点 D 为 BC 的中点, $DE \perp AB$, 垂足为点 E,则 DE 等于 ()


B. $\frac{15}{10}$

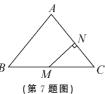
C. $\frac{60}{12}$

D. $\frac{75}{13}$

4. (2013 • 柳州)如图,在△ABC中, ($\angle BAC = 90^{\circ}, AB = 3, AC = 4, AD \mp$ 分 $\angle BAC$ 交 BC 于 D,则 BD 的长为



- D. $\frac{21}{5}$
- 5. (2013 · 绥化)如图,在△ABC,△ADE +, $\angle BAC = \angle DAE = 90^{\circ}$, AB = AC, AD=AE,点 C,D,E 三点在同一条直 B线上,连接 BD、CE. 以下四个结论: ①BD = CE; ② $BD \perp CE$; ③ $\angle ACE + \angle DBC = 45^{\circ}$;
 - ④ $BE^2 = 2(AD^2 + AB^2)$,其中结论正确的个数是
 - (

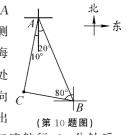

B. 2 A. 1

C. 3

6. 勾股定理是几何中的一个重要定理,在我国古算书 《周髀算经》中就有"若勾三,股四,则弦五"的记载,如 图(1)是由边长相等的小正方形和直角三角形构成 的,可以用其面积关系验证勾股定理,图(2)是由图 (1)放入长方形内得到的, $/BAC=90^{\circ}$,AB=3,AC=4,点 D、E、F、G、H、I 都在长方形 KLMJ 的边上,则 长方形 KLMJ 的面积为

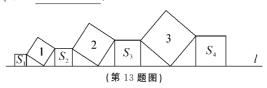
- A. 90
- B. 100
- C. 110
- D. 121
- 7. 如图,在 $\triangle ABC$ 中,AB=AC=5, BC = 6, M 为 BC 的中点, MNAC 于点 N ,则 MN 等于 (

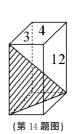
- D. $\frac{16}{5}$ C. $\frac{12}{5}$
- 8. 如图,在四边形 ABCD 中, /B = /C =90°. 点 E 是 AD 的中点, EF | AD 交 CB 于点F,DC=6,AB=8,BC=10,则线段 BF 的长为

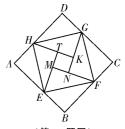


- A. 5
- B. $\frac{5}{2}$
- C. $\frac{36}{5}$
- 9. (2013·菏泽)如图,边长为 6 的大正方 形中有两个小正方形,若两个小正方形 的面积分别为 S_1 、 S_2 ,则 S_1+S_2 的值为

A. 16


- B. 17
- C. 18
- D. 19
- 10.(2013·潍坊)一渔船在海岛 A 南偏东 20°方向的 B 处遇险,测 得海岛 A 与 B 的距离为 20 海 里,渔船将险情报告给位于 A 处 的救援船后,沿北偏西 80°方向 (向海岛 C 靠近. 同时,从 A 处出


发的救援船沿南偏西 10°方向匀速航行. 20 分钟后, 救援船在海岛 C 处恰好追上渔船,那么救援船航行 的速度为


- A. 10√3海里/小时
- B. 30 海里/小时
- C. 20 √3海里/小时
- D. 30 √3海里/小时

- 11. 在 $\triangle ABC$ 中, $\angle C = 90^{\circ}$,AB = 5,则 $AB^2 + AC^2 + BC^2$
- 12. 在 $\triangle ABC$ 中, $AB=2\sqrt{2}$,BC=1, $\angle ABC=45^{\circ}$,以 AB为一边作等腰直角三角形 ABD, 使 $\angle ABD = 90^{\circ}$, 连 接 CD,则线段 CD 的长为
- 13. 如图,在直线 l上依次摆放着七个正方形,已知斜放 置的三个正方形的面积分别为1,2,3,正放置的四个 正方形的面积依次为 S_1 、 S_2 、 S_3 、 S_4 、则 $S_1 + S_2 + S_3 +$

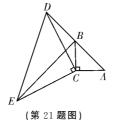
14. 某长方体的长、宽、高如图所示,则图中阴影部分的 面积是

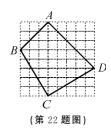
(第15题图)

八年级 RJ 数学

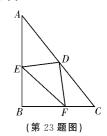
- 15. 我国汉代数学家赵爽为了证明勾股定理,创制了一 幅"弦图",后人称其为"赵爽弦图". 如图是由弦图变 化得到,它是由八个全等的直角三角形拼接而成的, 记图中正方形 ABCD、正方形 EFGH、正方形 MNKT的面积分别为 S_1 、 S_2 、 S_3 ,若 $S_1 + S_2 + S_3 =$ 10,则 S_2 的值是
- 16. 有下列各组数:①0.9,1.2,1.5;② $\sqrt{3}$,2, $\sqrt{7}$;③8,10, 12; ④ 9, 40, 41; ⑤ 17, 15, 8. 其中是勾股数的为 .(只填序号)
- 17. 在一块平地上,离张大爷房屋9米远处有一棵大树, 在一次强风中,这棵大树从离地面6米处折断倒下, 倒下的部分长为10米,大树倒下时 张大爷的房屋.(填"会"或"不会")
- 18. 如图,长方体的底面相邻两边长 分别为 2 cm 和 4 cm, 高为5 cm, 若 一只蚂蚁从点 P 开始经过 4 个侧 面爬行一圈到达点 Q,则蚂蚁爬行 的最短路径长为
- (第18题图) 19.(2013 • 襄阳)在一张直角三角形纸 (第19题图)

 $5~\mathrm{cm}$

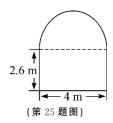

- 片中,分别沿两直角边上一点与斜边 中点的连线剪去两个三角形,得到如 图所示的直角梯形,则原直角三角形 纸片的斜边长是 . 20. (2013 · 张家界)如图, OP=
- 1,过 P 作 $PP_1 \perp OP$,且 PP_1 =1,得 $OP_1 = \sqrt{2}$;再过 P_1 作 $P_1P_2 \perp OP_1$ 且 $P_1P_2 = 1$,得 $OP_2 = \sqrt{3}$;又过 P_2 作 $P_2P_3 \perp$


 OP_2 且 $P_2P_3=1$,得 $OP_3=2$;…依此法继续作下去, 得 OP₂₀₁₂=

三、解答题


- 21. (2013·吉林) 如图,在 $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$,AC=BC,延长 AB 至点 D,使 DB=AB,连结 CD,以 CD为直角边作等腰直角三角形 CDE,其中/DCE= 90°,连结 BE.
 - (1)求证: $\triangle ACD \cong \triangle BCE$;
 - (2)若 AC=3 cm,求 DE 的长.

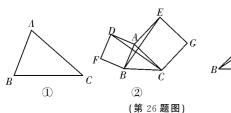
- 22. 如图,每个小正方形的边长为1.
 - (1)求四边形 ABCD 的周长;
 - (2)求证 $\angle BCD = 90^{\circ}$.

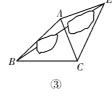


23. 如图,在等腰直角三角形 ABC 中, / ABC=90°, D 为 AC 边上中点,过 D 点作 $DE \perp DF$,交 AB 于 E,交 BC 于 F ,若 AE=4 , FC=3 ,求 EF 的长.

24. 有一块三角形菜地,量得两边长分别为 41 m,15 m, 第三边上的高为9m,求这块菜地的面积.

25. 如图,某住宅社区在相邻两楼之间修建一个上方是 一个半圆,下方是长方形的仿古通道,现有一辆卡车 装满家具后,高4米,宽2.8米,请问这辆送家具的卡 车能否通过这个通道?





★★★★ 第一部分 期末复习

- 26. (1) 如图①,已知 $\triangle ABC$,以 AB、AC 为边向 $\triangle ABC$ 外作等边三角形 ABD 和等边三角形 ACE,连接 BE、CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹)
 - (2)如图②,已知 $\triangle ABC$,以 AB、AC 为边向外作正方形 ABFD 和正方形 ACGE,连接 BE、CD, BE 与 CD 有什么数量关系?简单说明理由:
 - (3)运用(1)(2)解答中所积累的经验和知识,完成下题:

如图③,要测量池塘两岸相对的两点 B,E 的距离,已经测得 $\angle ABC = 45^{\circ}, \angle CAE = 90^{\circ}, AB = BC = 100 米, AC = AE, 求 BE 的长.$

第十八章 平行四边形

1. 平行四边形的性质及判定

- (1)定义:有两组对边分别平行的四边形叫做平行四边形.
 - (2)性质:
 - ①边:两组对边分别平行且相等.
 - ②角:两组对角分别相等,邻角互补.
 - ③对角线:对角线互相平分.
 - (3)判定

边:

- ①两组对边分别平行的四边形是平行四边形.
- ②两组对边分别相等的四边形是平行四边形.
- ③一组对边平行且相等的四边形是平行四边形.

角:

两组对角分别相等的四边形是平行四边形.

对角线:

对角线互相平分的四边形是平行四边形.

2. 矩形的定义与性质

- (1)定义:有一个角是直角的平行四边形叫做矩形.
- (2)性质:
- ①矩形具有平行四边形的一切性质.
- ②矩形的四个角都是直角.
- ③矩形的对角线相等.
- ④矩形是轴对称图形,有两条对称轴,对称轴是对 边中点连线所在的直线.
 - (3)判定:
 - ①有一个角是直角的平行四边形是矩形.
 - ②对角线相等的平行四边形是矩形.
 - ③有三个角是直角的四边形是矩形.
 - (4) 直角三角形斜边中线的性质:

直角三角形斜边上的中线等于斜边的一半.

3. 菱形的性质及判定

(1)定义:有一组邻边相等的平行四边形叫做菱形.

- (2)性质:
- ①菱形具有平行四边形的所有性质.
- ②菱形的四条边都相等.
- ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
- ④菱形是轴对称图形,它有两条对称轴,分别是两条对角线所在的直线.
 - (3)判定:
 - ①一组邻边相等的平行四边形是菱形.
 - ②对角线互相垂直的平行四边形是菱形.
 - ③四边相等的四边形是菱形.

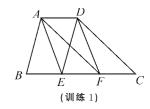
4. 正方形的性质及判定

- (1)定义:邻边相等的矩形或有一个角是直角的菱形是正方形.
 - (2)性质:
 - ①对边平行,邻边垂直、四条边都相等.
 - ②四个角相等,都等于90°.
- ③两条对角线互相垂直平分且相等,每一条对角线平分一组对角.
- ④是轴对称图形,有 4 条对称轴,也是中心对称图形.
 - (3)判定:
 - ①有一组邻边相等的矩形是正方形.
 - ②对角线互相垂直的矩形是正方形.
 - ③有一个角是直角的菱形是正方形.
 - ④对角线相等的菱形是正方形.
 - ⑤对角线互相垂直、相等的平行四边形是正方形.
- ⑥对角线互相垂直、平分且相等的四边形是正方形.

5. 三角形中位线

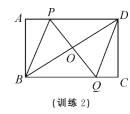
- (1)三角形中位线的定义:连接三角形两边中点的 线段叫做三角形的中位线,任意一个三角形有三条中 位线.
- (2)三角形中位线定理:三角形的中位线平行于第 三边,且等于第三边的一半.

6. 两条平行线间的距离


- (1)两条平行线中,一条直线上任意一点到另一条 直线的距离叫做两条平行线间的距离。
 - (2)夹在两条平行线间的平行线段相等.
 - (3)平行线间的距离处处相等.

类型一 平行四边形的性质及判定

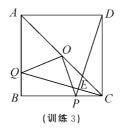
【训练 1】 如图所示,在梯形 ABCD 中,AB//DE, AF//DC, E、F 两点在边 BC 上,且四边形 AEFD 是平行四边形.


- (1)AD与BC有何数量关系?请说明理由.
- (2)当 AB=DC 时,求证:□AEFD 是矩形.

类型二 菱形的性质及判定

【训练 2】 如图,矩形 ABCD中,点 P 是线段 AD上一动点,O为 BD 的中点,PO的延长线交 BC 于 Q.

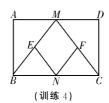
- (1)求证:OP = OQ.
- (2)若 AD=8 厘米,AB=6 厘米,P 从点 A 出发,以 1 厘米/秒的速度向 D 运动(不与 D 重合). 设运动时间为 t 秒,请用 t 表示 PD 的长,并求 t 为何值时,四边形 PBQD 是菱形?


★★★★ 第一部分 期末复习

类型三 正方形的性质

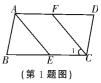
【训练 3】 如图,AC 是正方形 ABCD 的对角线,点 O 是 AC 的中点,点 Q 是 AB 上一点,连接 CQ,DP \bot CQ 于点 E,交 BC 于点 P,连接 OP,OQ;

求证:(1) $\triangle BCQ \cong \triangle CDP$;


(2)OP = OQ.

类型四 三角形的中位线

【训练 4】 如图,在矩形 ABCD 中,M、N 分别是边 AD、BC 的中点,E、F 分别是线段 BM,CM 的中点.


- (1)求证: $\triangle ABM \cong \triangle DCM$;
- (2)判断四边形 *MENF* 是什么特殊四边形,并证明 你的结论:

一、选择题

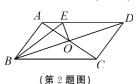
1. 如图,在平行四边形 ABCD 中, $\angle B$ = 80° , AE 平分 $\angle BAD$ 交 BC 于点 E, CF//AE 交 AD 于点 F, 则 $\angle 1$ 的 B 值为

A. 40°

B. 50°

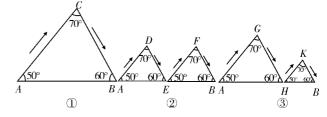
C. 60°

D. 80°


2. 如图,在周长为 20 cm 的 $\Box ABCD$ 中, $AB \neq AD$,AC、BD 相交于点 O, $OE \perp BD$ 交 AD 于 E,则 $\triangle ABE$ 的周长为 ()

A. 4 cm

B. 6 cm

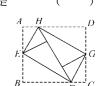

C. 8 cm

D. 10 cm

3. 如图,图①、图②、图③分别表示甲、乙、丙三人由 A 地到 B 地的路线图(箭头表示行进的方向),其中 E 为 A B 的中占 A H > H B 则三人行进路线长度的大小关

AB 的中点,AH>HB,则三人行进路线长度的大小关系为 ()

A. 甲<乙<丙


B. 乙<丙<甲

C. 丙<乙<甲

D. $\Psi = Z = 两$

4. (2012•济宁)如图,将矩形 ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形 EFGH,EH

=12 cm, EF=16 cm, 则边 AD 的长是

A. 12 cm

B. 16 cm

C. 20 cm

D. 28 cm

(笛 / 師図)

5. 如图,两条笔直的公路 l_1 、 l_2 相交于点 O,村庄 C 的村民在公路的旁边建了三个加工厂 A、B、D,已知 AB=BC=CD=DA=5 公里,村庄 C 到公路 l_1 的距离为 4公里,则村庄 C 到公路 l_2 的距离是 ()

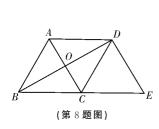
A. 3 公里

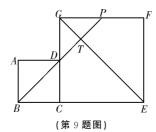
B. 4 公里

C.5 公里

D.6公里

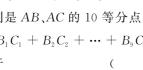
- 6. 在 Rt $\triangle ABC$ 中, $\angle B = 90^{\circ}$, AB = 3, BC=4,点 D 在 BC 上,以 AC 为对角线的所有 □ADCE 中,DE 最小的值是 A. 2 В. 3 C. 4 D. 5
- 7. 四边形 ABCD 的对角线 AC、BD 相交于点 O, 若有下 列条件:①AB = AD;② $\angle DAB = 90^{\circ}$;③BO = DO,AO=CO; ④矩形 ABCD; ⑤菱形 ABCD; ⑥正方形 AB-CD,则在下列推理中,不成立的是

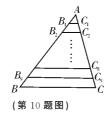

8. 如图,在菱形 ABCD 中,对角线 AC BD 相交于点 O, AB=5,AC=6,过点 D 作 AC 的平行线交 BC 的延长 线于点 E,则 $\triangle BDE$ 的面积为



B. 24

C. 48


9. (2013 • 龙岩)如图,边长分别为4和8的两个正方形 ABCD和CEFG并排放在一起,连接BD并延长交 EG 于点 T, 交 FG 于点 P, 则 GT 的长为


 $A.\sqrt{2}$

B. $2\sqrt{2}$

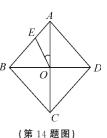
D. 1

10. 如图,在 $\triangle ABC$ 中,BC=15, $B_1, B_2, \dots, B_9, C_1, C_2, \dots, C_9$ 分别是 AB、AC 的 10 等分点, 则 $B_1C_1 + B_2C_2 + \cdots + B_9C_9$ 等于

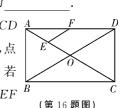
A. 45

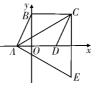
B. 55

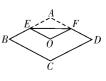
C. 67. 5


D. 135

二、填空题


11. 在平面直角坐标系中,点A、B、C 的坐标分别是A(-2,5), B(-3,-1), C(1,-1),在第一象限内找一 点 D, 使四边形 ABCD 是平行四边形,那 么点 D 的坐标是


- 13. 已知菱形两条对角线的长分别为 5 cm 和 8 cm,则这 个菱形的面积是 cm².
- 14. 如图,已知菱形 ABCD 的一个内 AC, $BAD = 80^{\circ}$, 对角线 AC, BD相交于点O,点E在AB上且BEB=BO,则 $\angle EOA=$ 度.



15. 在矩形 ABCD 中, AB=3, AD=4, P 是 AD 上一个动点, $PE \perp AC$ 于 E, PF_BD 于 F,则 PE+PF 的值为

- 16. (2013 · 遵义)如图,在矩形 ABCD 中,对角线 AC、BD 相交于点 O,点 E,F 分别是 AO,AD 的中点,若 的周长为 cm.
- 17. (2013 荆州)如图, △ACE 是以□ABCD 的对角线 AC 为边的等边三角形,点 C与点 E关于 x 轴对称,若 E点 的坐标是 $(7,-3\sqrt{3})$,则 D点的坐标是

(第17题图)

(第18题图)

- 18. (2013 · 南京) 如图,将菱形纸片 ABCD 折叠,使点 A 恰好落在菱形的对称中心 O处,折痕为 EF. 若菱形 ABCD 的边长为 2 cm, $\angle A=120^{\circ}$,则 EF= cm.
- 19. 如图,在平行四边形 ABCD中,AB=3,AD=4, $\angle ABC = 60^{\circ}$,过 BC 的中点 E 作 EF |AB,垂足为点 F,与 DC 的延长线相交于点 H,则 $\triangle DEF$ 的面积为
- 20. 如图,矩形 ABCD 的面积为 5,它的两条对角线交于 点 O_1 ,以 AB、 AO_1 为两邻边作平行四边形 ABC_1O_1 , 平行四边形 ABC_1O_1 的对角线交于点 O_2 ,同样以 AB、 AO_2 为两邻边作平行四边形 ABC_2O_2 ……依此类