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State Estimation for Robotics

A key aspect of robotics today is estimating the state (e.g., position and orientation) of
arobot as it moves through the world. Most robots and autonomous vehicles depend
on noisy data from sensors such as cameras or laser rangefinders to navigate in a three-
dimensional world. This book presents common sensor models and practical advice
on how to carry out state estimation for rotations and other state variables. It covers
both classical state estimation methods, such as the Kalman filter, and important mod-
ern topics, such as batch estimation, the Bayes filter, sigmapoint and particle filters,
robust estimation for outlier rejection, and continuous-time trajectory estimation and
its connection to Gaussian-process regression. The methods are demonstrated in the
context of important applications, such as point-cloud alignment, pose-graph relax-
ation, bundle adjustment, and simultaneous localization and mapping. Students and
practitioners of robotics alike will find this a valuable resource.

DR. TIMOTHY D. BARFOOT (Professor, University of Toronto Institute for
Aerospace Studies — UTIAS) has been conducting research in the area of naviga-
tion of mobile robotics for more than 15 years, both in industry and academia, for
applications including space exploration, mining, military, and transportation. He has
made contributions in the areas of localization, mapping, planning, and control. He
sits on the editorial boards of the International Journal of Robotics Research and the —
Journal of Field Robotics and was the General Chair of Field and Service Robotics
2015, which was held in Toronto.




Preface

My interest in state estimation stems from the field of mobile robotics, particu-
larly for space exploration. Within mobile robotics, there has been an explosion of
research referred to as probabilistic robotics. With computing resources becom-
ing very inexpensive, and the advent of rich new sensing technologies, such as
digital cameras and laser rangefinders, robotics has been at the forefront of devel-
oping exciting new ideas in the area of state estimation.

In particular, this field was probably the first to find practical applications of the
so-called Bayes filter, a much more general technique than the famous Kalman
filter. In just the last few years, mobile robotics has even started going beyond
the Bayes filter to batch, nonlinear optimization-based techniques, with very
promising results. Because my primary area of interest is navigation of robots
in outdoor environments, I have often been faced with vehicles operating in three
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viii Preface

dimensions. Accordingly, I have attempted to provide a detailed look at how to
approach state estimation in three dimensions. In particular, I show how to treat
rotations and poses in a simple and practical way using matrix Lie groups. The
reader should have a background in undergraduate linear algebra and calculus,
but otherwise, this book is fairly standalone. I hope readers of these pages will
find something useful; I know I learned a great deal while creating them.

I have provided some historical notes in the margins throughout the book,
mostly in the form of biographical sketches of some of the researchers after
whom various concepts and techniques are named; I primarily used Wikipedia
as the source for this information. Also, the first part of Chapter 6 (up to the alter-
nate rotation parameterizations), which introduces three-dimensional geometry,
is based heavily on notes originally produced by Chris Damaren at the University
of Toronto Institute for Aerospace Studies.

This book would not have been possible without the collaborations of many
fantastic graduate students along the way. Paul Furgale’s PhD thesis extended
my understanding of matrix Lie groups significantly by introducing me to their
use for describing poses; this led us on an interesting journey into the details
of transformation matrices and how to use them effectively in estimation prob-
lems. Paul’s later work led me to become interested in continuous-time estima-
tion. Chi Hay Tong’s PhD thesis introduced me to the use of Gaussian processes
in estimation theory, and he helped immensely in working out the details of the
continuous-time methods presented herein; my knowledge in this area was fur-
ther improved through collaborations with Simo Sirkké from Aalto University
while on sabbatical at the University of Oxford. Additionally, I learned a great
deal by working with Sean Anderson, Patrick Carle, Hang Dong, Andrew Lam-
bert, Keith Leung, Colin McManus, and Braden Stenning; each of their projects

~added to my understanding of state estimation. Colin, in particular, encouraged
me several times to turn my notes from my graduate course on state estimation
into this book.

I am indebted to Gabriele D’Eleuterio, who set me on the path of studying
rotations and reference frames in the context of dynamics; many of the tools he
showed me transferred effortlessly to state estimation, and he also taught me the
importance of clean, unambiguous notation.

Finally, thanks to all those who read and pointed out errors in the drafts of this
book, particularly Marc Gallant and Shu-Hua Tsao, who found many typos, and
James Forbes, who volunteered to read and provide comments.

Tim Barfoot
June 12, 2017
Toronto
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Introduction

Robotics inherently deals with things that move in the world. We live in an era
of rovers on Mars, drones surveying the Earth, and, soon, self-driving cars. And
although specific robots have their subtleties, there are also some common issues
we must face in all applications, particularly state estimation and control.

The state of a robot is a set of quantities, such as position, orientation, and
velocity, that, if known, fully describe that robot’s motion over time. Here we
focus entirely on the problem of estimating the state of a robot, putting aside the
notion of control. Yes, control is essential, as we would like to make our robots
behave in a certain way. But the first step in doing so is often the process of
determining the state. Moreover, the difficulty of state estimation is often under-
estimated for real-world problems, and thus it is important to put it on an equal
footing with control.

In this book, we introduce the classic estimation results for linear systems cor-
rupted by Gaussian measurement noise. We then examine some of the extensions
to nonlinear systems with non-Gaussian noise. In a departure from typical esti-
mation texts, we take a detailed look at how to tailor general estimation results to
robots operating in three-dimensional space, advocating a particular approach to
handling rotations.

The rest of this introduction provides a little history of estimation, discusses
types of sensors and measurements, and introduces the problem of state estima-
tion. It concludes with a breakdown of the contents of the book and provides some
other suggested reading.

1.1 A Little History

About 4,000 years ago, the early seafarers were faced with a vehicular state esti-
mation problem: how to determine a ship’s position while at sea. Early attempts
to develop primitive charts and make observations of the sun allowed local navi-
gation along coastlines. However, it was not until the fifteenth century that global
navigation on the open sea became possible with the advent of key technolo-
gies and tools. The mariner’s compass, an early form of the magnetic compass,
allowed crude measurements of direction to be made. Together with coarse nau-
tical charts, the compass made it possible to sail along rhumb lines between key
destinations (i.e., following a compass bearing). A series of instruments was then
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gradually invented that made it possible to measure the angle between distant
points (i.e., cross-staff, astrolabe, quadrant, sextant, theodolite) with increasing
accuracy (Figure 1.1).

These instruments allowed latitude to be determined at sea fairly readily using
celestial navigation. For example, in the Northern Hemisphere, the angle between
the North Star, Polaris, and the horizon provides the latitude. Longitude, however,
was a much more difficult problem. It was known early on that an accurate time-
piece was the missing piece of the puzzle for the determination of longitude. The
behaviours of key celestial bodies appear differently at different locations on the
Earth. Knowing the time of day therefore allows longitude to be inferred. In 1764,
British clockmaker John Harrison built the first accurate portable timepiece that
effectively solved the longitude problem; a ship’s longitude could be determined
to within about 10 nautical miles (Figure 1.2).

Estimation theory also finds its roots in astronomy. The method of least squares
was pioneered' by Gauss, who developed the technique to minimize the impact of
measurement error in the prediction of orbits. Gauss reportedly used least squares
to predict the position of the dwarf planet Ceres after passing behind the Sun,
accurate to within half a degree (about nine months after it was last seen). The
year was 1801, and Gauss was 23. Later, in 1809, he proved that the least squares
method is optimal under the assumption of normally distributed errors. Most of
the classic estimation techniques in use today can be directly related to Gauss’
least squares method.

The idea of fitting models to minimize the impact of measurement error car-
ried forward, but it was not until the middle of the twentieth century that esti-
mation really took off. This was likely correlated with the dawn of the computer
age. In 1960, Kalman published two landmark papers that have defined much of
what has followed in the field of state estimation. First, he introduced the notion
of observability (Kalman, 1960a), which tells us when a state can be inferred
from a set of measurements in a dynamic system. Second, he introduced an opti-
mal framework for estimating a system’s state in the presence of measurement
noise (Kalman, 1960b); this classic technique for linear systems (whose measure-
ments are corrupted by Gaussian noise) is famously known as the Kalman filter
and has been the workhorse of estimation for the more than 50 years since its
inception. Although used in many fields, it has been widely adopted in aerospace
applications. Researchers at the National Aeronautics and Space Administra-
tion (NASA) were the first to employ the Kalman filter to aid in the estima-
tion of spacecraft trajectories on the Ranger, Mariner, and Apollo programs.
In particular, the on-board computer on the Apollo 11 lunar module, the first
manned spacecraft to land on the surface of the Moon, employed a Kalman filter
to estimate the module’s position above the lunar surface based on noisy radar
measurements.

! There is some debate as to whether Adrien Marie Legendre might have come up with least squares
before Gauss.
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Many incremental improvements have been made to the field of state estima-
tion since these early milestones. Faster and cheaper computers have allowed
much more computationally complex techniques to be implemented in practical
systems. However, until about 15 years ago, it seemed that estimation was pos-
sibly waning as an active research area. But something has happened to change
that; exciting new sensing technologies are coming along (e.g., digital cameras,
laser imaging, the Global Positioning System (GPS) satellites) that pose new chal-
lenges to this old field.

1.2 Sensors, Measurements, and Problem Definition

To understand the need for state estimation is to understand the nature of sensors.
All sensors have a limited precision. Therefore, all measurements derived from
real sensors have associated uncertainty. Some sensors are better at measuring
specific quantities than others, but even the best sensors still have a degree of
imprecision. When we combine various sensor measurements into a state esti-
mate, it is important to keep track of all the uncertainties involved and therefore
(it is hoped) know how confident we can be in our estimate.

In a way, state estimation is about doing the best we can with the sensors we
have. This, however, does not prevent us from, in parallel, improving the quality
of our sensors. A good example is the theodolite sensor that was developed in
1787 to allow triangulation across the English Channel (Figure 1.3). It was much
more precise than its predecessors and helped show that much of England was
poorly mapped by tying measurements to well-mapped France.

It is useful to put sensors into two categories: interoceptive® and exteroceptive.
These are actually terms borrowed from human physiology, but they have become
somewhat common in engineering. Some definitions follow:*

in-tero-cep-tive [int-o-ro-"sep-tiv], adjective: of, relating to, or being stimuli
arising within the body.

ex-tero-cep-tive [ek-sto-ro-’sep-tiv], adjective: relating to, being, or activated by
stimuli received by an organism from outside.

Typical interoceptive sensors are the accelerometer (measures translational
acceleration), gyroscope (measures angular rate), and wheel odometer (mea-
sures angular rate). Typical exteroceptive sensors are the camera (measures
range/bearing to a landmark or landmarks) and time-of-flight transmitter/receiver
(e.g., laser rangefinder, pseudolites, GPS transmitter/receiver). Roughly speak-
ing, we can think of exteroceptive measurements as being of the position and
orientation of a vehicle, whereas interoceptive ones are of a vehicle’s velocity or
acceleration. In most cases, the best state estimation concepts make use of both
interoceptive and exteroceptive measurements. For example, the combination of

2 Sometimes proprioceptive is used synonomously.
3 Merriam-Webster’s Dictionary.
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a GPS receiver (exteroceptive) and an inertial measurement unit (three linear
accelerometers and three rate gyros; interoceptive) is a popular means of esti-
mating a vehicle’s position/velocity on Earth. And the combination of a Sun/star
sensor (exteroceptive) and three rate gyros (interoceptive) is commonly used to
carry out pose determination on satellites.

Now that we understand a little bit about sensors, we are prepared to define the
problem investigated in this book:

Estimation is the problem of reconstructing the underlying state of a system given a sequence
of measurements as well as a prior model of the system.

There are many specific versions of this problem and just as many solutions. The
goal is to understand which methods work well in which situations, in order to
pick the best tool for the job.

1.3 How This Book Is Organized
The book is broken into three main parts:

I Estimation Machinery
I Three-Dimensional Machinery
IIT Applications

The first part, “Estimation Machinery,” presents classic and state-of-the-art esti-
mation tools, without the complication of dealing with things that live in three-
dimensional space (and therefore translate and rotate); the state to be estimated is
assumed to be a generic vector. For those not interested in the details of working
in three-dimensional space, this first part can be read in a standalone manner. It
covers both recursive state estimation techniques and batch methods (less com-
mon in classic estimation books). As is commonplace in robotics and machine
learning today, we adopt a Bayesian approach to estimation in this book. We
contrast (full) Bayesian methods with maximum a posteriori (MAP) methods
and attempt to make clear the difference between these when faced with nonlin-
ear problems. The book also connects continuous-time estimation with Gaussian
process regression from the machine-learning world. Finally, it touches on some
practical issues, such as robust estimation and biases.

The second part, “Three-Dimensional Machinery,” provides a basic primer on
three-dimensional geometry and gives a detailed but accessible introduction to
matrix Lie groups. To represent an object in three-dimensional space, we need
to talk about that object’s translation and rotation. The rotational part turns out
to be a problem for our estimation tools because rotations are not vectors in the
usual sense and so we cannot naively apply the methods from Part I to three-
dimensional robotics problems involving rotations. Part II, therefore, examines
the geometry, kinematics, and probability/statistics of rotations and poses (trans-
lation plus rotation).
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Finally, in the third part, “Applications,” the first two parts of the book are
brought together. We look at a number of classic three-dimensional estimation
problems involving objects translating and rotating in three-dimensional space.
We show how to adapt the methods from Part I based on the knowledge gained in
Part II. The result is a suite of easy-to-implement methods for three-dimensional
state estimation. The spirit of these examples can also, we hope, be adapted to
create other novel techniques moving forward.

1.4 Relationship to Other Books

There are many other good books on state estimation and robotics, but very few
cover both topics simultaneously. We briefly describe a few recent works that do
cover these topics and their relationships to this book.

Probabilistic Robotics by Thrun et al. (2006) is a great introduction to mobile
robotics, with a large focus on state estimation in relation to mapping and local-
ization. It covers the probabilistic paradigm that is dominant in much of robotics
today. It mainly describes robots operating in the two-dimensional, horizontal
plane. The probabilistic methods described are not necessarily limited to the
two-dimensional case, but the details of extending to three dimensions are not
provided.

Computational Principles of Mobile Robotics by Dudek and Jenkin (2010) is
a great overview book on mobile robotics that touches on state estimation, again
in relation to localization and mapping methods. It does not work out the details
of performing state estimation in three dimensions.

Mobile Robotics: Mathematics, Models, and Methods by Kelly (2013) is
another excellent book on mobile robotics and covers state estimation extensively.
Three-dimensional situations are covered, particularly in relation to satellite-
based and inertial navigation. As the book covers all aspects of robotics, it does
not delve deeply into how to handle rotational variables within three-dimensional
state estimation.

Robotics, Vision, and Control by Corke (2011) is another great and comprehen-
sive book that covers state estimation for robotics, including in three dimensions.
Similarly to the previously mentioned book, the breadth of Corke’s book neces-
sitates that it not delve too deeply into the specific aspects of state estimation
treated herein.

Bayesian Filtering and Smoothing by Sirkki (2013) is a super book focused
on recursive Bayesian methods. It covers the recursive methods in far more depth
than this book but does not cover batch methods nor focus on the details of car-
rying out estimation in three dimensions.

Stochastic Models, Information Theory, and Lie Groups: Classical Results
and Geometric Methods by Chirikjian (2009), an excellent two-volume work,
is perhaps the closest in content to the current book. It explicitly investigates the
consequences of carrying out state estimation on matrix Lie groups (and hence
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rotational variables). It is quite theoretical in nature and goes beyond the current
book in this sense, covering applications beyond robotics.

Engineering Applications of Noncommutative Harmonic Analysis: With
Emphasis on Rotation and Motion Groups by Chirikjian and Kyatkin (2001)
and the recent update, Harmonic Analysis for Engineers and Applied Scientists:
Updated and Expanded Edition (Chirikjian and Kyatkin, 2016), also provide key
insights to representing probability globally on Lie groups. In the current book,
we limit ourselves to approximate methods that are appropriate to the situation
where rotational uncertainty is not too high.

Although it is not an estimation book per se, it is worth mentioning Optimiza-
tion on Matrix Manifolds by Absil et al. (2009), which provides a detailed look
at how to handle optimization problems when the quantity being optimized is not
necessarily a vector, a concept that is quite relevant to robotics because rotations
do not behave like vectors (they form a Lie group).

The current book is somewhat unique in focusing only on state estimation
and working out the details of common three-dimensional robotics problems in
enough detail to be easily implemented for many practical situations.



