Lecture Notes in
Mathematics

Edited by A. Dold and B. Eckmann

Subseries: Fondazione C.ILM.E., Firenze
Adviser: Roberto Conti

1057

Bifurcation Theory
and Applications



_ecture Notes In
Mathematics

Edited by A. Dold and B. Eckmann

Subseries: Fondazione C.I.M.E., Firenze
Adviser: Roberto _Conti

1057

Bifurcation Theory
and Applications

Lectures given at the 2nd 1983 Session of the
Centro Internationale Matematico Estivo (C..M.E.)
held at Montecatini, ltaly, June 24 - July 2, 1983

Edited by L. Salvadori

SpringerVerlag
Berlin Heidelberg New York Tokyo 1984



PREFACE

An internationa;'summer course on Bifurcation Theory and Applications was hofﬂ‘
at.nontecatini Iﬁaly, June 26—Ju1y 2, 1983, organized by the CIME Founhation: The'
purpose was to, feature the fundamental methods and the recent advanceg of the
general theory, and to deplct‘ its role in . approaching the ang;ysik ;}'natural'
phenomend. The importance of the ‘connections between atability and bifurcation
problems was constantly stresSed. Thus the course also provided notiona and results-'
that complement previous courses_organzzed by-the CIME and other Italian summer
schools on the subject of ‘stability. . . : a o -

. The general plan was to have four sets ‘of iectures dethed to: (ii“a general
" introduction to dynamic bifurcation, (ii) bifurcation problems for mechanical.
systems with a finite number of degrees of freedom-'(iii) bifurcation problems in
Hydrodynamics; (iv) bifurcation problems 1n B1omatheuatics. They were 1n charge of

Professors J. K. Hale, J. J. Duistermaat G. Iooss, and S. Busenberg regpéptively;

The present volume consists of the texts of these lectures. The texts of two
additional lectures delivered by Professors W. S. Loud and A. Vanderbauwhede are

, also 1nc1uded. _
i o wlsh to express my thanks to the lecturers and all the participants for‘

':éheir contribution to the success of the course. I wish also to thank warmly Profes-

+ sors R. Cdnti aﬁd A. Moro, Director and Secretary of CIME, for their help and

assistance in planning and organizing the course. .

L. Salvadori
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BIFURCATION PHENOMENA -IN BIOMATHEMATICS
Stavros N. Busenberg
Department of Mathematics

-~ « Harvey Mudd College
Claremont, California 91711

Introduction. Practically every aspect of biomathematics has significant bifurcation
phenomena. The literature on this subject is quite vast, and we aim to trace a path

that touc’ =3 of the hidﬁpoints of this rich field, illustrating along the way a

variety of problems that are of current interest. We begin by giving an overview of

the areas in this field where bifurgation ﬁﬁenomena come up.

The scale of the phenﬁmena that we will be modelling is strictly circumscribed,
even though it i§ vast. At éhe lowest level, we need to deal with molecules and l
chemical reactions, and at the highest level, with populations consisting of 15rgei
numbers of individuals. Between these two boundaries are single cells and the
organisms into which they develop through the processes of growth, proliferation, -
morphogenesis and differentiation. There are problems involving bifurcations at
each of these levels, and the range of topics that we cover prevents us from giving
the details of the derivations and proofs of results. We adopt the strategy of
describing the origin of a few model problems in each cf the maip areas'of biomathe-_
matics and thpn presenting the key mathematica]'techniqbes that lead to the bifurca-.
tion phenomena that occur. We then proceed to discuss how these same techniques ca;
be used, perhaps with some modifications, to treat other related biomathematical
problems. Even with this concise style of presentation, we are constrained to not
mention many interesting problems whose omission does not refiect their lack of
importance. »The material is organized so that few mathematical prerequisites are
needed in the first chapter, while the required m&thematical‘background gradually
increases with each subsequent chapter. ‘ -

It should bé noted right away that biologists rightfu]ly emphasize the complex- .
ity of their subject. This should not deter us from Seekiﬁg those generél principles
that might be present in this field. However, in our tendency to abstract and-to
mathematize binlogical phenomena, we have to stay awa;e‘of the strict limits of

applicability of any particular idea or method of analysis. éy and Targe, the field



we are treating deals with modeis that are designed to describe some aspects of nar-
row ranges of biological phenomena. There are no theories in biomathematics that .
are so precise that they offer the hope of a strict axiomatization. Rather than
being a weakness, this fact is part of the nature of this field's ambitious goal:
that of constructing a rational basis for the understanding of how living organisms

function and interact.

CHAPTER I
AN OVERVIEW OF BIFURCATION PROBLEMS IN BIOMATHEMATICS

1. Introduction. This chapter is devoted to giving an overview of what will be
treated in the remainder of these lectures. In the next section we will give a
synoptic description of the origins of the problems that we will study. Because the
area of population dynamics-has the oldest and most vast literature, we shall start
by looking at problems arising in this field. In fact, we will discover that prac-
tically all the equations that are studied in biomathematics have their origin and
some applications in population dynamics. We y111 then proceed to consider problems
arising in biochemical reactions, morphogenesis and physiology. In the third section
we will treat a specific case that illustrates the fact that, even though biological
observations may appear hopelessly complicated, there are situations where appro-

priate simple mathematical models can shed light on general basic principles.

2. The origin of bifurcation problems in biomathematics. Our aim in this section

is to provide a rapid introduction to the type of problems that lead to bifurcation
phenomena in biomathematics. The intent is to give an overview for the reader who
has not had much exposure to ihis field. Those readers who have a background in
this area may skip this section. We look at the problems we describe from the
perspective of the biological area in which they arise, starting with population
dynamics, that is, the field on the largest scale of the spectrum of the phenomena

that concern us.



a. Population dynamics. This is a traditional field of applications of mathe-

matics having its modern origins in the work of Volterra [26] and Lotka [15] whe
sought to explain cbserved data concerning certain populations by employing differen-
tial equation models. In the theory of epidemics, such models date back to the work
of Daniel Bernoulli [4] in 1760, who studied the effects of inoculation on smallpox
mortality (see Bradley [6], for a modern discussion of this work). In this century,
the early work of Ross [23] and McKendrick [18] sought to identify threshold values
of pertinent parameters that would, if exceeded, give rise to nontrivial solutions

of the equations they were using in their models. Many of these models lead to

systems of parametrized nonlinear ordinary differential equations of the form

%%. = f(u:X); f(ayo) 5 0’ a € R ’ X € Rn ’ (2.])

1A

and a threshold value 4y is soucht such that if «

stable non-negative solution x € RE , Wwhile if o > a, @ nontrivial stable posi-

@y X = 0 issthe only

tive solution to (2.1) exists. In the case of epidemic models,-these positive solu-
tions can be idantified with the persistence of an endemic level of disease. .
Nonlinear ordinary differential equation models continue to play a large role in
models of populations, and in the case where n > 3, they have lead to a number of
basic results describing complicated bifurcation phenomena.

It was recognized from the very beginning of this early work in population
modelling that une could not neglect the effects of the past, and that hereditary or
delay terms had to be introduced into the dynamic equations. Volterra was the
pioneer in this field, and his ideas are still having an inf]uence. The types of
models that arise out of this involve either delay differential equations or Volterra
integrodifferential equations. In the first case, equation (2.1) is generalized to
have the form

) - f(a,x,)s  Fla,0) =0, x:Ic (=,0]+R", acR,

(2.2)
xt(s) = x(t+s), s eI,



» :

where I is an-interval in (-=,0]. S0, x, 4is a function describing the “past

t
history" of x(t) at time t: Models using equations of the form (2.2) come up in
various .circumstances where maturation or incubation pefiods need to be taken into
account, or else where it is the cumulative effect over a past time 1nter§a1 that
affects the present development of a population. There are many bifurcation phenom-
ena encountered in this type of model, including bifurcations of.periodic. quasi-
periodic and chaotic solutions. However, there are still many open questions con-
cerning the existence, stability and generecity of such bifurcations.

Another method for describing tbese delayed effects is through the use of dif-

ference equations of the form

= flawx ) = %€ RY . n=0,0,2,5...x€¢R (2.3)

*n
where the time variable is now discretized and there is a delay of one unit of time
between the two sides of the equation. Equations of this type have been used-to
partiaily explain some complicated data, and.the.gomplexity_of the dynamic thavior
of some simple-looking maps of the form (%.33 has stimulated both abstract analytical
work and the willingness on the part of some biologists to consider dynamic equations
as viahle models for explaining some of the complicated observed behavior in both
population and physiological probiems.

Perhaps the most natural way to introduce the effect of maturation periods in

-the model equations is by introducing an additional independent variable, the age
variable, This was first done by McKendrick [18] and there has been a recent rise
in interest in these so-called age-dependent models. This field has yielded inter-
esting bifurcation results but is still full of major open probiems.

In ali the above, we have heen considering autonomous equations only. However,
it is clear that biological populations usually reside in environments that have
peciodic, almost periodic and éven stochastic fluctuations. It is hence important

" to analyse how these temporal variations of the environment affect the bifurcation

phenomena that have been found in the autonomous case. In some cases thi§ has been

done. However, mast of the more complicated bifurcation phenomena that occur in the



autonomous models have yet to be analyzed in the time dependent case. These are

important probIems, because time variations in the environment have been shown, in
certain special cases, to have significant effects on the results.

Finally, we note the obvious fact that most 1iving beings do not remain fixed
in one spatial location but use an amazing variety of mechanisms to move from place
to place. This leads to the basic prob]eh of spatial pattern formation in population
problems, which has been traditionally treated by either adding Tinear or nonlinear
diffusion terms to the dynamic equations. One class of equations that occurs in this
way is the reaction diffusion equations which take the form

g—g= au+ flau), (t,x) e RY xq, -acR", aeR (2.4)

where A 1is the Laplace operator. An equation of this type was first derived in
1937 by Fisher [9] as a mdédel for the spread of an advantageous gene, however, dif-
fusion models trace their origin back to the work of Pearson and Blakeman in 1906
[22], in evolutionary theory. Since then, equations of the form (2.4), and its gene-
ralizations, have played a significant role in biomathematics. Among the bifurcation
results that are considered here are the questions of the existence and stability of
traveling wave solutions, and the formation of spatial patterns via the bifurcation
of spatially heterogeneous steady states. Similar.questions arise aisQ wnen non-
linear diffusion terms are used, for example A(H(u)) instead of au in (2.4).
These equations are more difficult from the mathematical Qiewpoint but'exhibit, in
some cases, some novel bifurcation phenomena that seem to explain the data that is
observed in particular experiments. The recent book by Okubo [20], and the article
b:* Levin in [13] provide an introduction to current work in this area.

Finally. we observe that various combinations of the types of equations which
we have described may be used in modelling a particular situation. A number of such
equations have been derived and analysed within the context of population problems,

and there are many challenging modelling and analysis problems involving such equa-
-

tions. The monograph by May [16] provides an introduction to the general area of

population models, while that of Bailey [2] gives a broad view of the theory of



epidemics.

b. Biochemical reactions. The genetic information that is needed to develop a

living organism is contained in a chemical molecule DNA and is expressed via a series
of biochemical reactions that are prescribed by this molecule and its environment.
Biochemical reactions also play a role in the regulation of the pkysiological and
neural processes that animals use for their normal functioning. The kinetics (or
dynamics) of most of these reactions are complex and not compietely known. However,
some general underlying principles have been established through clever and meticu-
lous experiments. Typically, these reactions are thought to be governed by systems
of ordinary differential equations such as (2.1) with the parameter o belonging to
R™ and representing the different reaction rates or the rates of absorbtion of the
various chemicallspecies that take part in the reaction. These differential equa-
tions take particular forms because of their chemical kinetic origin, and the pos-
sible types of bifurcations and stable solutions that can occur are of basic interest.
Since these biochemical resctions are taking piace in animals, they do not occur
under well-stirred conditions. Hence, it has been found useful to introduce time-
delays in order to simulate the time it takes reactants to cross membranes and go
from one reaction site to another. Time delays are also used to take into account
the slow transcription and translation process that occurs when the DNA molecule is
used as a template to produce other molecules. The resulting equations are of the
general form (2.2) but have a special structure that is different from the equations
of population dynamics. Again, the same bifurcation questions concerning constant
equilibria, periodic solutions and other morz complicated stable attractors come up
here. Models with spatial diffusion like (2.4) have also been used for the same
purposes, and in the case of physiological control mechanisms, differéﬁce equations
1ike (2.3) have been employed in certain cases. One of the areas where bifurcation
phenomena in difference equations and delay differential equations have been used to
explain observed behavior is in anomalies in red blood cell production. The book by

Winfree [28], and the papers by Mackey and Glass [15] and Banks and Mahaffy [3] pro-



vide some of the general background in this area.

c. Developmental biology. Most living things start with a single cell which

contains the information and the manufacturing capacity necessary to develop into one
of the many 1ife forms that surround (and include) us. The variety 6f bifurcation
phenomena that occh in this process is large, and the biological implications are
profound and interesting. Even though much activity has been going on in the area

of developmental biology, this science is sti1l at its beginnings, and the mathemati-
cal contributions to it must be understood in this context. The most successful
models in this area have used nonlinear partial differential equations of the reac-'
tion dif%usion type (2.4), while others have employed either a nonlinear diffusion
mechanism or else spatial diffusion coupled with the equation of age-dependent dyna- .
mics. In all cases one seeks to understand how and why certain spatial patterns and
structures are formed and maintained. In mathematical terms, this translates into
the question of the bifurcation and stabi]ity of spatially heterogeneous solutions
which have a particular spatial structure. One of the mechanisms that is experiment-
ally supported in some situations, is that of a controlling substance, a morphogen,
which is produced in a particular location of a developing organism, and whose level
of concentration can trigger reactions that govern the formation of the organism.
Since one is dealing with a growing shape that is being modified in form, these are
essentially moving boundary, nonlinear reaction diffusion problems. A few nice bifur-
cation results already exist in this area, but this is a major rapidly developing
field with many open problems and also with many models that have yet to be properly
formulated in mathematical terms. A general reference in this area is the book by
Bonner [5], while the seminal paper by Turing [27] discusses one of the main approach-

es to modelling such phenomena.

d. Physiology. The regular beating of the heart, the rythmic breathing cycles
and the regular contractions of the involuntary muscles are physiological phenomena
that are vital but go almost unobserved when they function well. The dynamical sys-

tems that regulate these various processes have the zero steady state as another,
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less desirable, equilibrium. They also have a variety of irregular solutions which
.are associated with pathologies and physiological disorders. So there are some
“basic problems of understanding the bifurcations that lead from the morbid zero
ste&ﬂy state, to thé regular rhythmic periodic state, and also from there to the
irregular time dependent states that are associated with specific pathologies and
disorders. Much work has gone into this area, some of it using numerical methods
exclusively, but some that has émployed methods of bifurcation theory. The models
in this field use systems of ordinary differential equations like (2.1), delay
equations (?.2{ and difference equations (2.3).

A well established area of mathematical analysis of physiological phenomena is
- that involving models of signal transmission in a single neuron. There is a large
literature on the special reaction diffusion equations which go under the name of
the Hodgkin-Huxley equations, and their various approximations such as the Fitzhugh-
Nagumo equations. The aim here is to explain the bifurcation and structure of sin-
gle, or else groups of, "spikes" or béaks {n the vo[tage across the nebron wall
which travel from one end of the neuron to the other. When dealing with groups of
neurons, there are basic questions and some results concerning tﬁ; bifurcation and
stability of periodically repeating spatially hetérogeneous solutions. Such pat-
terns have been gsed Jin the modelling of the spread of cortical depression. The
state of knowledge of how these groupings of nerve cells interact is not very advan-
ced and there are many open questions concerning propagation of signals in reural
nets of more than one dimension and the formation of épatially heterogeneous paiterns.
Two good references in this area are tﬁe book by Smoller [25], and the article of S.
Héstings in [11];

We now give an example of a simple mathematical model whose bifurcation proper-
ties have had a considerable effect on the way that certain complicated biological

phenomena are viewed.

3. Bifurcations in a simple discrete time model. In 1954 the Australian entomolo-

gist Nicholson [19] published his experimental observations showing the population



levels of sheep blowflies. His experiments were carried under carefully controlled
conditions for several years and showed the variations in the population level of
colonies of blowflies that were kept under constant environmental conditions and
given a fixed amount of food daily. A sample of his results is shown in Figure (3.9)
below. These population levels show a surprisingly complex structure, even though

the flies were kept isolated from external periodic or stochastic stimuli. The
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Figure 3.1. Nicholson's d~ta on sheep blowflies with daj]y food
supply of 0.4g (a) and 0.5g (b) of ground liver.
Fig. (b) is rescaled linearly to match Fig. (a).

results of Nicholson show a dominant basic period of 35 tc 40 days, and since there
was no external stimulus of such a period, he concluded that the population had an
intrinsic regulatory mechanism. The question was raised as to whether or not this
type of complicated dynamics was due to a complex internal structure of the popula-
tion or else to stochastic effects. ‘

There are several models of various levels of sophistication [1, 10, 21] that
have been used to explain Nicholson's data. We consider only one of the simplest
ones, since it contains all of the major elements of the bifurcation phenomena needed

to explain the complexity of the observed dynamics. This is a difference equation
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model that assumes that there are discrete generations of flies with the adult flies
laying eggs synchroncusly, and the nehly laid eggs requiring a fixed time (16 days is
the observed value) before they develop into reproductive adults. We normalize this
maturation time to be_one, and assume that the number of eggs that are laid is affect-
ed, via a logistic control term due to the compefition for the limited protein supply.
If Xn denotes the number of adults at time n, these assumptions lead to a model

*equation of the form

Xne) * f(u,xn), n=0.1;2;:505 Xo given, a € R. (3.1)

The form of the function f 1is of crucial importance, and both experimental and
theoretical considerations lead to a function that has a graph of the form shown

below. One of the simplest forms that captures the essential aspects of this type
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.of function is f(a,x) = ax(1-x), and it leads to the quadratic difference equation
Xt ™= axn(l-xn), a € A =[0,4]. (3.2)
The restriction on the parameter o is needed in order to have

f:AxI+1, I=7[0,1].



