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ABSTRACT

As structural engineers move further into the age of digital computa-
tion and rely more heavily on computers to solve problems, it remains
paramount that they understand the basic mathematics and engineering
principles used to design and analyze building structures. The analysis of
complex structural systems involves the knowledge of science, technol-
ogy, engineering. and math to design and develop efficient and economi-
cal buildings and other structures. The link between the basic concepts and
application to real world problems is one of the most challenging learning
endeavors that structural engineers face. A thorough understanding of the
analysis procedures should lead to successful structures.

The primary purpose of this book is to develop a structural engineer-
ing student’s ability to solve complex structural analysis problems that
they may or may not have ever encountered before. The book will cover
and review numerical techniques to solve mathematical formulations.
These are the theoretical math and science principles learned as prerequi-
sites to engineering courses, but will be emphasized in numerical formula-
tion. A basic understanding of elementary structural analysis is important
and many methods will be reviewed. These formulations are necessary
in developing the analysis procedures for structural engineering. Once
the numerical formulations are understood, engineers can then develop
structural analysis methods that use these techniques. This will be done
primarily with matrix structural stiffness procedures. Both of these will
supplement both numerical and computer solutions. Finally, advanced
stiffness topics will be developed and presented to solve unique structural
problems. These include member end releases, nonprismatic, shear, geo-
metric, and torsional stiffness.

KEY WORDS

adjoint matrix. algebraic equations, area moment, beam deflection, car-
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CHAPTER 1

RooTts oF ALGEBRAIC
AND TRANSCENDENTAL
EQUATIONS

In structural engineering, it is important to have a basic knowledge of how
computers and calculators solve equations for unknowns. Some equations
are solved simply by algebra while higher order equations will require
other methods to solve for the unknowns. In this chapter, methods of find-
ing roots to various equations are explored. The roots of an equation are
defined as values of x where the solution of an equation is true. The most
common roots are where the value of the function is zero. This would
indicate where a function crosses an axis. Roots are sometimes complex
roots where they contain both a real number and an imaginary unit.

1.1 EQUATIONS

Equations are generally grouped into two main categories, algebraic equa-
tions and transcendental equations. The first type, an algebraic equation,
is defined as an equation that involves only powers of x. The powers of x
can be any real number whether positive or negative. The following are
examples of algebraic equations:

8x' =3x +5x=6=0
l+2s/._'=0
5

X' =37=0

The second type is transcendental equations. These are non-algebraic
equations or functions that transcend, or cannot be expressed in terms of



