
LTE Backhaul Planning and Optimization

Edited by
Esa Metsälä
Juha Salmelin

LTE BACKHAUL PLANNING AND OPTIMIZATION

Edited by

Esa Markus Metsälä Juha T.T. Salmelin Nokia Networks, Espoo, Finland

This edition first published 2016 © 2016 John Wiley & Sons, Ltd

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

LTE backhaul: planning and optimization / edited by Esa Markus Metsälä and Juha T.T. Salmelin.

Includes bibliographical references and index.

ISBN 978-1-118-92464-8 (hardback)

1. Long-Term Evolution (Telecommunications) 2. Telecommunication-Traffic. I. Metsälä, Esa Markus.

II. Salmelin, Juha T.T.

TK5103.48325.L7345 2015

621.3845'6-dc23

2015021968

A catalogue record for this book is available from the British Library.

Set in 10/12pt Times by SPi Global, Pondicherry, India Printed and bound in Singapore by Markono Print Media Pte Ltd

1 2016

List of Contributors

Gerald Bedürftig

Nokia Networks Berlin, Germany

Raimo Kangas

Nokia Networks Tampere, Finland

Jouko Kapanen

Nokia Networks Espoo, Finland

Raija Lilius

Nokia Networks Espoo, Finland

Esa Markus Metsälä

Nokia Networks Espoo, Finland José Manuel Tapia Pérez

Nokia Networks Espoo, Finland

Juha T.T. Salmelin

Nokia Networks Espoo, Finland

Jari Salo

Nokia Networks Doha, Qatar

Csaba Vulkán

Nokia Networks Budapest, Hungary

Gabriel Waller

Nokia Networks Espoo, Finland

Foreword

With LTE, the mobile network has evolved into a 150+ Mbps per user high-speed always-on packet network. Next we will see high-speed LTE networks becoming available for even larger populations, and solving capacity and speed bottlenecks that users currently experience. For many of us, mobile broadband is the preferred and primary access to the Internet.

The competition for the hearts and minds of LTE subscribers makes the user experience increasingly critical. Understanding the technology behind the service is the key to business success. Delving into the details of LTE technology soon reveals many items that affect performance, allowing room for optimization—and differentiation—in the market.

In general, operators today have more choice and support than ever in choosing their strategy for LTE planning and optimization tasks, including IP and backhaul tasks. The myriad challenges operators face can be addressed by specific professional services, purchased from an expert organization, or issues can be solved by in-house professionals. Many large networks are operated as a service, and a continuum of possibilities exists, from traditional in-house operation to fully managed service operations, and everything in between.

Whatever the technology and business strategy of the operator, high-bandwidth LTE radio needs to be reflected in the IP backhaul. For the LTE backhaul, a number of new areas call for special attention, namely security, synchronization, availability, end-user QoS and dimensioning, to name a few.

LTE IP planning professionals depend on both LTE and IP knowledge, and greatly benefit from realistic guidance for their projects. This book is of great help when assessing technical and economical alternatives and when creating solid and reliable real-life backhaul designs for LTE success.

Igor Leprince Executive Vice President, Global Services Nokia

Acknowledgments

The editors would first like to acknowledge the contributing authors, who are our colleagues at Nokia Networks: Gerald Bedürftig, Raimo Kangas, Jouko Kapanen, Raija Lilius, José Manuel Tapia Pérez, Jari Salo, Csaba Vulkán and Gabriel Waller. Your knowledge has been the most essential ingredient in this project.

For specific review comments and for bigger and smaller suggestions and contributions we would like to thank: Heikki Almay, Antti Pietiläinen, Jyri Putkonen, Eugen Wallmeier, Raimo Karhula, Pekka Koivistoinen, Zoltán Vincze, Péter Szilágyi, Balázs Héder, Attila Rákos, Gábor Horváth, Lajos Bajzik, Dominik Dulas, Michal Malcher, Puripong Thepchatri, Lasse Oka, Steve Sleiman, Taufik Siswanto, Matti Manninen (Elisa), Timo Liuska (Juniper Networks) and Mika Kivimäki.

Also, we would like to thank the team at John Wiley & Sons for very good cooperation and an easy editing process, especially Mark Hammond, Tiina Wigley, Sandra Grayson, Teresa Netzler, Tim Bettsworth and Victoria Taylor.

We appreciate the patience and support of our families and our authors' families during the writing period.

We are grateful for comments and suggestions for improvements or changes that could be implemented in forthcoming editions of this book. This feedback can be sent to the editors' email addresses: esa.metsala@nokia.com and juha.salmelin@nokia.com.

Esa Markus Metsälä and Juha T.T. Salmelin Espoo, Finland

List of Abbreviations

2G second generation (mobile system) 3G third generation (mobile system) 3GPP Third Generation Partnership Program

Abstract Syntax Notation One ASN.1

almost blank subframe ABS ACK acknowledgement signal

assured forwarding behavior group xx AFxx

AH Authentication Header AM acknowledged mode

Aggregate Maximum Bit Rate AMBR adaptive multi-rate coding AMR automatic neighbor relation ANR AOM administration of measurements

AP Application Protocol

Access Point Name-Aggregate Maximum Bit Rate APN-AMBR

active queue management AOM Address Resolution Protocol ARP ATM asynchronous transfer mode

Broadband Forum BBF BC boundary clock

Baskett, Chandy, Muntz and Palacios BCMP

best effort BE

bidirectional forwarding detection BFD

Backhaul, Busy Hour BH BITW bump in the wire

batch Markovian arrival processes **BMAP BMCA** best master clock algorithm BSC base station controller BSHR

bidirectional self-healing ring

xviii List of Abbreviations

BTS base station

CA carrier aggregation, certification authority

CAC connection admission control

capex capital expenditure CBS committed burst size

CDF cumulative distribution function CDMA Code Division Multiple Access

CE customer equipment CET carrier Ethernet

CIR committed information rate
CLI command line interface
CM configuration management
CMP Certificate Management Protocol

CoDel controlled delay

CoMP coordinated multi-point

CORBA Common Object Request Broker Architecture

CoS class of service C-plane control plane

CPE customer premises equipment

CPU central processing unit
CRC cyclic redundancy check
CRL certificate revocation list
CRS common reference signals

CSFB Compact Small Form-factor Pluggable

CSV comma-separated values

CUBIC TCP with cubic window increases function CWDM coarse wavelength division multiplexing

DC dual connectivity
DCF discounted cash flows
DCH dedicated channel

DCN data communications network

DHCP Dynamic Host Configuration Protocol

DL downlink

DNS domain name system

DNU do not use

DOCSIS data over cable service interface specification

DoS denial of service
DPD dead peer detection

DSCP differentiated services code point

DSL digital subscriber line

DWDM dense wavelength division multiplexing

DWRR deficit weighted round robin

EAPS Ethernet Automatic Protection Switching

EBS excess burst size
ECMP equal cost multipath
eCOMP enhanced COMP

List of Abbreviations xix

EDGE enhanced data rates for GSM evolution

EF expedited forwarding

eICIC enhanced inter-cell interference coordination

EIR excess information rate

E-LAN Ethernet service, multipoint-to-multipoint

E-line Ethernet service, point-to-point element management system

eNB evolved NodeB

EPC evolved packet core
ERP Ethernet ring protection
ESM EPS session management
ESP Encapsulating Security Payload
E-tree Ethernet service, point-to-multipoint

E-UTRAN Evolved Universal Terrestrial Radio Access Network

EXP experimental bits

FCAPS fault, configuration, accounting, performance, security

FCFS first come, first served FDD frequency division duplex

FD-LTE full duplex LTE

FeICIC further enhanced inter-cell interference coordination

FIFO first in, first out
FTP File Transfer Protocol
GbE gigabit Ethernet
GBR guaranteed bit rate
GE gigabit Ethernet

G.Fast up to Gigabit/s fast short distance digital subscriber line

GLONASS Global Navigation Satellite System, Russia

GNSS global navigation satellite system GPON gigabit-capable passive optical network

GPRS general packet radio service GPS Global Positioning System

GSM Global System for Mobile communications
GTP general packet radio service Tunneling Protocol
GTP-U general packet radio service Tunneling Protocol user

HARQ hybrid automatic repeat request

HetNet heterogeneous networks
HRM hypothetical reference model
HSPA high-speed packed access
HSRP Hot Standby Router Protocol
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

ICIC inter-cell interference coordination ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IKE Internet key exchange
IMS IP Multimedia Subsystem

IMT-A international mobile telecommunications advanced

impex implementation expenditure

IP Internet protocol

IPsec Internet Protocol Security architecture IRC interference rejection combining

IRR internal rate of return
ISD inter-site distance

itag video parameter classification

ITU International Telecommunication Union

ITU-T ITU Telecommunication Standardization Sector

IU indoor unit

KPI key performance indicator

L1 Layer 1 in Open Systems Interconnection data link layer
L2 Layer 2 in Open Systems Interconnection data link layer

L2 VPN Layer 2 virtual private network
L3 VPN Layer 3 virtual private network

LAG link aggregation group
LAN local area network
LDF load distribution factor
LFA loop-free alternate
LOS line of sight
LSP label switched path
LTE long-term evolution

LTE-A long term evolution advanced M/G/R-PS M/G/R Processor Sharing model

MAC media access control
MAN metropolitan area network
MAP Markovian arrival processes

MBH mobile backhaul

MBMS Multimedia Broadcast Multicast Service

MEF Metro Ethernet Forum

MeNB master eNB MGW media gateway

MIB management information base
MIMO multiple input, multiple output
MLO multilaver optimization

ML-PPP multilayer point-to-point protocol MME mobile management entity MPEG4 Moving Pictures Experts Group

M-plane management plane

MPLS multiprotocol label switching

MPLS TC multiprotocol label switching traffic class MPLS-TP multiprotocol label switching traffic profile

MSP multiplex section protection

MS-SPRING multiplex section protection ring
MSTP Multiple Spanning Tree Protocol
MTBF mean time between failures

MTTR mean time to repair
MTU maximum transfer unit
MVI multi-vendor interface
MWR microwaye radio

NaaS network management system as a service

NAS network application server
NETCONF Network Configuration Protocol
NGMN Next Generation Mobile Network

NG-SDH Next Generation Synchronous Digital Hierarchy

nLOS near line of sight NLOS non line of sight

NMS network management system

non-GBR non-guaranteed bit rate

NP non-protected
NPV net present value
NTP Network Time Protocol
O&M operation and maintenance

OAM operations administration and maintenance

OC-3 optical carrier level 3

ODU outdoor unit
OID object identifier
opex operational expend

opex operational expenditure
OSPF Open Shortest Path First
OSS operation support system

OTDOA observed time difference of arrival

OTT over the top
OU outdoor unit
P protected (IPsec)

PDF probability distribution function PDH plesiochronous digital hierarchy

PDN public data network
PDP packet data protocol
PDU protocol data unit
PE provider edge

PE-PE provider edge to provider edge P-GW packet data network gateway

PHB per-hop behaviors PHY physical layer

PKI public key infrastructure
PLMN public land mobile network
PM performance monitoring
PON passive optical network

ppb parts per billion

xxii List of Abbreviations

PPP point-to-point protocol
ppm pulse per minute
pps pulse per second
PRC primary reference clock
PS HO packet service handover

PSK pre-shared key

PTP Precision Time Protocol

QCI quality of service class indicator
QNA queuing network analyzer
QoE quality of experience
QoS quality of service
RA radio access

RBID radio bearer identification
RC resource coordination
RE range extension
RED random early detection
RF radio frequency
RFCs request for comments

RLC radio link control RN relay node

RNC radio network controller
ROI return on investment
RRC radio resource control
RRH remote radio head

RRM radio resource management
RSTP Rapid Spanning Tree Protocol
RTO retransmission timeout timer
RTP Real-time Transport Protocol

RTT round trip time RX receive, receiver

S1 Interface between eNB and MME/S-GW

S1-AP S1 Application Protocol

S1-MME interface between eNB and MME S1-U interface between eNB and S-GW

SA security association SACK selective acknowledgment

SCEP Simple Certificate Enrollment Protocol

SCF Small Cell Forum

SCTP Stream Control Transmission Protocol

SDH synchronous digital hierarchy

SEG security gateway
SeNB slave eNB
S-GW serving gateway
SLA service level agreement
SMS short message service

List of Abbreviations xxiii

SMTP Simple Mail Transfer Protocol

SNMP Single Network Management Protocol

SOA service-oriented architecture

SOAP Simple Object Oriented Access Protocol

SON self-organizing network SONET synchronous optical network SP strict priority scheduling

SP-GW combined node of S-GW and P-GW

S-plane synchronization plane SPQ strict priority queuing SRLG shared risk link group

SRVCC single radio-voice call continuity

SS7 signaling system 7 SSH secure shell

SSL secure sockets layer

SSM synchronization status messages
STM synchronous transport module
STP Spanning Tree Protocol

SyncE Synchronous Ethernet

TCP Transmission Control Protocol

TDD time division duplex TD-LTE time division duplex LTE

TDM eICIC time domain enhanced inter-cell interference coordination

TFRC Transmission Control Protocol-friendly rate control
TLS Transport Layer Security protocol

TMN Telecom Management Network
TTI transmission time interval

TTL Time to Live

TWAMP Two-Way Active Measurement Protocol

TX transmit, transmitter
UDP User Datagram Protocol

UE user equipment

UL Uplink U-plane user plane

USB universal serial bus

VDSL very high bit rate digital subscriber line

VLAN virtual local area network

VLL virtual leased line

VoIP voice over Internet protocol VoLTE voice over long-term evolution

VPLS virtual private local area network service

VPN virtual private network
VPWS virtual private wire service
VRF virtual routing and forwarding
VRRP Virtual Router Redundancy Protocol

xxiv List of Abbreviations

WACC weighted average cost of capital

W-CDMA Wideband Code Division Multiple Access

WDM wavelength division multiplexing

WFQ weighted fair queuing
WRR weighted round robin
X2-AP X2 application protocol

X2-U interface between eNB and eNB xDSL "any kind of" digital subscriber line XG-PON 10 gigabits/passive optical network XML Extensible Markup Language

XPIC cross-polarization interference cancellation

Contents

Fo Ac	List of Contributors Foreword Acknowledgments List of Abbreviations				
1		oductio		1	
	Esa Markus Metsälä and Juha T.T. Salmelin 1.1 To the Reader				
	1.1 To the Reader 1.2 Content 1.3 Scope				
		rence		2 2 2	
2	LTE Backhaul				
	Gera	ıld Bedi	irftig, Jouko Kapanen, Esa Markus Metsälä and Juha T.T. Salmelin		
	2.1	Introdu		3	
	2.2		ackhaul Planes	5	
			3GPP Planes and Protocol Stacks	5	
		2.2.2	Synchronization Plane	7	
		2.2.3	Management Plane	9	
		2.2.4	Active Monitoring Plane	9	
		2.2.5	Security Control Plane	10	
		2.2.6	Control and User Plane of Additional Proprietary Applications	10	
	2.3	Radio	Features of LTE and LTE-A	11	
		2.3.1	LTE	11	
		2.3.2	LTE-A	12	
	2.4	Requirements for LTE Backhaul (SLAs)		17	
		2.4.1	Capacity	17	
		2.4.2	Latency and Loss	18	
		2.4.3	QoS Capabilities	21	
			Synchronization	21	
		2.4.5	Availability	22	

vi Contents

		2.4.6	Security	22
		2.4.7	Examples	23
	2.5		ort Services	26
		Plannir	27	
			ackhaul Technologies	29
		2.7.1	Access	30
		2.7.2	Aggregation and Backbone Network	34
	2.8	Small (Cell Backhaul	34
	2.9	Future Radio Features Affecting Backhaul		35
			Inter NodeB CoMP (eCoMP)	35
		2.9.2	Dual Connectivity	36
		2.9.3	Dynamic eICIC	38
	2.10	Related	d Standards and Industry Forums	39
		2.10.1	3GPP	39
		2.10.2	ITU-T SG15	40
		2.10.3	IEEE 802	40
		2.10.4	IETF	40
		2.10.5	MEF	40
		2.10.6	NGMN	41
		2.10.7	BBF	41
		2.10.8		41
			or Example	42
	Refe	rences		42
3	Econ	omic M	Iodeling and Strategic Input for LTE Backhaul	45
	Gabi			
	3.1	Introdu	ction	45
		3.1.1	Role of Backhaul Within LTE	46
		3.1.2	Why and What to Model	48
	3.2	Strategi	ic Input for Planning	49
			Physical Infrastructure	49
				50
			Capacity and Interfaces	50
			Network Technologies	51
			Network Topology	51
		3.2.6	Make or Buy	51
		3.2.7	Backhaul Security Aspects	52
	3.3	Quantif	Fying Benefits	53
		3.3.1	Revenue from LTE Backhaul	53
		3.3.2	Contribution to Mobile Service Revenue	54
		3.3.3	Cost Savings	54
			ying Costs	55
		3.4.1	Equipment Purchases	55
		3.4.2	Economic Lifetime	55
		3.4.3	Operational Costs	56
		3.4.4	Other Costs	57

	3.5	Case Router	58			
		3.5.1 Cash Flow	58			
		3.5.2 Payback Period	59			
		3.5.3 Net Present Value (NPV)	61			
		3.5.4 Selection of the Interest Rate	63			
		3.5.5 Internal Rate of Return	64			
		3.5.6 Return on Investment and Further Metrics	64			
	3.6	Wireless Backhaul Case Study	66			
		3.6.1 Case Definition	66			
		3.6.2 Payback Period	68			
		3.6.3 NPV	69			
		erences	70			
	Furt	ther Reading	71			
4	Din	nensioning Aspects and Analytical Models of LTE MBH Networks	73			
		ba Vulkán and Juha T.T. Salmelin				
	7.5	Introduction	73			
		Dimensioning Paradigm	76			
	4.3	Applications and QoE: Considerations	78			
		4.3.1 Transmission Control Protocol	79			
		4.3.2 Web Browsing	83			
	2 14	4.3.3 Video Download	85			
		Dimensioning Requirements	87			
	4.5	Traffic Models	88			
		4.5.1 Peak Load or Busy Hour Load	92			
		4.5.2 Geographic Diversity and Daily Load Profile/Distribution	93			
		4.5.3 Session Level User Behavior	95			
		4.5.4 Burst Level User Behavior	99			
		4.5.5 Packet Level Behavior	102			
		4.5.6 Transmission Control Protocol Models	106			
	4.6					
		4.6.1 Queuing Methods	113			
		4.6.2 Fluid Network Models	117			
		4.6.3 Network Model	118			
		4.6.4 Routing and Requirement Allocations	119			
	4.7	Dimensioning	122			
		4.7.1 QoS-Driven Dimensioning	122			
	D C	4.7.2 Reliability Requirement Based Dimensioning	124			
	Refe	rences	127			
5	Planning and Optimizing Mobile Backhaul for LTE					
		Raija Lilius, Jari Salo, José Manuel Tapia Pérez and Esa Markus Metsälä				
	5.1	Introduction	129			
		5.1.1 Planning and Optimization Process	130			
	F 0	5.1.2 High-Level Design Overview	131			
	5.2	Backhaul Network Deployment Scenarios	132			
		5.2.1 Connectivity Requirements	132			