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Preface

Our group has been working on wire-based logic restructuring (rewiring) for over a decade.
Over the years, we have published numerous conference and journal papers on rewiring. As
a recent major milestone, we have developed a rewiring scheme that reaches a near-complete
rewiring rate (96%). This result demonstrates the high power of this kind of logic trans-
formation techniques and the great potential of applying them on modern electronic design
automation (EDA) tools.

Because of the aggressive and continuous scaling down of transistor sizes, to 45, 22 nm,
and even below 16 nm, wires have become a dominant factor affecting circuit performance.
Hence, rewiring is particularly suitable for today's nanometer technologies.

We could not find a book that focuses on and discusses rewiring techniques. Since rewiring
techniques have become much more practical in nanometer technologies, we felt there was a
need to publish a reference book to provide readers with the key ideas.

This book is of introductory to intermediate level. We hope this book will help in popular-
izing science, and the readers will find this book interesting and informative.

Tak-KEr LaM, WAI-CHUNG TANG, XING WEL,
Y1 Diao, AND DavID Yu-LIANG WU



Introduction

The concepts of various major rewiring techniques are explained throughout the book grad-
ually. First, readers will be presented with the basic ideas of rewiring. Next, the technical
details of each kind of rewiring technique will be discussed in detail. Finally, the applications
of rewiring techniques in various electronic design automation (EDA) areas will be introduced.

Intended Audience

Students studying computer/electronic engineering, academic staff, and even EDA engineers
are the intended readers of this book. The readers should have some basic knowledge of
Boolean algebra, logic gates, and graph theory. For readers without the related advanced
knowledge, essential concepts will be introduced and explained throughout the book.

Type Conventions

The following conventions are used in this book:

e Mathematical symbols and names of circuit elements, such as a and «v, are typeset in this

font.
e Codes are typeset in this font.
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1

Preliminaries

1.1 Boolean Circuits

A Boolean variable is a variable whose value can only be either O (false) or 1 (true) or
unknown. Every Boolean variable has two literals. They are the normal form and the
negation/complement of the variable. The negation of a variable always evaluates to the
opposite value of the variable. Suppose v is a Boolean variable; then its negation is v. When
v is 1, 0 is 0; when v is 0, © is 1. The literals of variable v are then v and ©.

A function consisting of Boolean variables is known as a Boolean function. It is a mapping
between Boolean spaces. For example, the function f : B™ — B™ is a mapping between
the input space of /m Boolean variables and the output space of n Boolean variables. We
use [(xy.&y......2x,, ., ) to indicate the input variables or input values of the Boolean
function f.

The mapping between Boolean spaces is achieved by Boolean operators. The basic Boolean
operators (operations) AND, OR, NOT, XOR, and XNOR are denoted as -, +, ~, ¢, and &,
respectively, in this book. We may omit the symbol - for clarity. The behavior of the basic
operators is listed in Table 1.1. Complex Boolean operators can be derived from these basic
operators. In fact, only AND and NOT, or only OR and NOT, are sufficient to derive all other
Boolean operations.

An example of Boolean function is f(a,b) = a - b, which computes the logical conjunction
of variables @ and b. A Boolean function may contain literals. The Boolean function
f(a,b) = a - bis such an example that computes the logical conjunction of variable a and the
negation of variable b. It may be surprising for readers who are not familiar with Boolean alge-
bra to see a function f(a, b, ¢) = a - b. This function is actually nothing special but is normal
and valid. It just means that, among the three variables, the value of variable ¢ is “don’t care.”
That is to say, the value of ¢ can be either O or 1, and f(a, b, ¢) = ab = abé + abe. For another
example, the function f(a,b.c) = (a+b) can be expanded into f(a,b,¢)= (a+0b) =
(a+b)e+ (a+b)e.

Observability don’t cares (ODCs) (Damiani and De Micheli 1990) of a Boolean variable
are the conditions under which the variable is not affecting any of the primary outputs. For
example, if an input / of an AND gate has the controlling value 0, its set of other inputs .J are
unobservable no matter what values they have. The ODC of .J is i. Satisfiability don’t cares

Boolean Circuit Rewiring: Bridging Logical and Physical Designs, First Edition.
Tak-Kei Lam, Wai-Chung Tang, Xing Wei, Yi Diao and David Yu-Liang Wu.
© 2016 John Wiley & Sons Singapore Pte Ltd. Published 2016 by John Wiley & Sons Singapore Pte Ltd.



2 Boolean Circuit Rewiring

Table 1.1 Behavior of the basic Boolean operators

Operator ~ When will it returns true?

AND - All of its operands are true

OR + Any one of its operands is true

NOT ~ Its operand is false

XOR & Both of its operands have different values

XNOR & Both of its operands have the same values

(SDCs) of a circuit node represent the local input patterns at the node that cannot be generated
by the node’s fanins. As a trivial example of SDC, if we connect all inputs of a two-input AND
gate to a common signal, the values of its inputs can never be {1,0} or {0, 1}.

Many rules in ordinary algebra, such as commutative addition and multiplication, associa-
tive addition and multiplication, and variable distribution, can be applied into Boolean algebra.
Therefore, function f(a,b,¢) = (a+b) = (a+b)é+ (a+b)ec = ac + bé + ac + be. For
each of the conjunction term, it can be expanded by connecting it with all combinations of
the literals of the missing variables by conjunction. Some additional important rules that are
obeyed in Boolean algebra only include @ - @ = a and a + a = a. Regarding our example, it
can be expanded as follows:

fla,b,c) = (a+b)

= (a+b)c+ (a+b)e
= (ac + bé) + (ac + be)
(

abé + abé + abé + abe) + (abe + abe + abe + abe)

abé + abe + abé + abe + abe + abe

Other rules can be derived from the basic rules easily. Since Boolean algebra is a vast area
of study, even the elementary topics can cover a whole book. In this book, we shall not cover
every detail.

Boolean functions can be realized in hardware using logic gates. A Boolean circuit or
Boolean network is composed of gates and implements some Boolean functions. We simply
use circuits or networks to represent Boolean circuits when the meaning is clear in the context.
Figure 1.1 illustrates the logic gates implementing the basic Boolean functions. An example
circuit composed of AND, OR, and NOT gates is shown in Figure 1.2(b). For gate e, its inputs
are a and b, so it is implementing the function a + b. Regarding gate f, its funcnon isa-b.

A less famous Boolean operator is the cofactor. The cofactor of a Boolean func-
tion f(wy,xy, ... @, ,x,) with respect to a variable , is Floy = floy, 29, ...,
B Li By 5 o5 o o8 I'y_1,%,). Suppose f = ab-+c, fla =b+ec, and f|.=ab+1=1.
Similarly, the cofactor of a Boolean function f(w,z,, ...z, ,,,) with respect to the
complement of a variable &, is | = f(z), 2y, ... 7,‘ 120,24 5. s, y.,). Suppose
f=ab+ ¢, f|, =0-b+ ¢ = c. Every Boolean functlon can be expressed usmg Shannon’s
expansion. For example flx)=a- f|, +7 - f|,. An example of a function with multiple

InpU[SINf(I Yz, w) hTUf'll/_*—IUjITJ+ij|LJ+ayfII1/
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Figure 1.1 Basic logic gates

(a)

Figure 1.2 Directed acyclic graph representation of a circuit. (a) A directed acyclic graph; (b) a Boolean
cireuit



