Tak-Kei Lam
Wai-Chung Tang
Xing Wel

Yi Diao

David Yu-Liang Wu

BOOLEAN CIRCUIT

REWIRING:

BRIDGING LOGICAL AND PHYSICAL
DESIGNS

Tak-Kei Lam
The Chinese University of Hong Kong, Hong Kong, P. R. China

Wai-Chung Tang

Queen Mary University of London, UK

Xing Wei

Easy-Logic Technology Ltd. Hong Kong, Hong Kong, P. R. China
Yi Diao

Easy-Logic Technology Ltd. Hong Kong, Hong Kong, P. R. China

David Yu-Liang Wu
Easy-Logic Technology Ltd. Hong Kong, Hong Kong, P. R. China

WILEY

This edition first published 2016
© 2016 John Wiley & Sons Singapore Pte Ltd

Registered office
John Wiley & Sons Singapore Pte Ltd. 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628.

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted. in any

form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names. service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book., they make no representations or warranties with respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is
sold on the understanding that the publisher is not engaged in rendering professional services and neither the
publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data applied for.
ISBN: 9781118750117

A catalogue record for this book is available from the British Library.
Setin 10/12pt, TimesLTStd by SPi Global. Chennai, India.

Printed and bound in Singapore by Markono Print Media Pte Ltd

1 2016

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 2.19
Figure 2.20
Figure 2.21

Basic logic gates

Directed acyclic graph representation of a circuit

Stuck-at fault

Untestable stuck-at fault

Unjustified AND/OR gates and their complete justifications
Example of recursive learning

Example of rewiring

Redundancy addition and removal

Identification of alternative wires in REWIRE

Mutual target and alternative wires

Uncontrollability implication for AND, OR, and NOT gates
Unobservability implication for AND, OR, and NOT gates
Examples of delete-first rewiring/error cancellation
General abstract view of error cancellation

Example of rewiring by logic addition

Examples of dynamic dominators

Example of an irredundant alternative wire

Error propagation of sa0(b — ¢1) and the error frontiers
Multiple alternatives wires

Sample graph-based alternate wiring patterns

DAG representations of the sample GBAW patterns
Implementation I of i = ab + ¢d

Karnaugh maps of SPFD,

Karnaugh maps of SPF D,

Karnaugh maps of SPFD

Karnaugh maps of SPF D,

Implementation Il of i = ab + cd

20

List of Figures

X
Figure 2.22 New Karnaugh maps of SPFD, 30
Figure 2.23 New Karnaugh maps of SPF D 31
Figure 2.24 SPFD-based rewiring 31
Figure 2.25 Circuit with timing violation 32
Figure 2.26 Circuit without timing violation after rewiring 33
Figure 3.1 Complete set of transformations for single alternative wire addition 40
Figure 3.2 Example of node merging 44
Figure 3.3 Signatures and ODC masks 46
Figure 3.4 Eight ways to construct an alternative node and their corresponding

sufficient conditions 50
Figure 3.5 SPFD: Example [52
Figure 3.6 SPFD: Example 2 52
Figure 3.7 SPFD-based local rewiring 56
Figure 3.8 SPFD-based global rewiring 58
Figure 3.9 SPFD-GR: GR_Modi fy_Logic_2 Example 61
Figure 3.10 SPFD-ER: Example 62
Figure 4.1 General abstract view of error cancellation 68
Figure 4.2 Source mandatory assignments 69
Figure 4.3 Rectification network 70
Figure 4.4 Simplified rectification network 71
Figure 4.5 Destination nodes of alternative wires 72
Figure 4.6 Source mandatory assignments of fault sal(gl — ¢2) 73
Figure 4.7 Removal of semi-redundant and redundant SMAs 74
Figure 4.8 Substitution rules of source mandatory assignments for AND and OR

gates 75
Figure 4.9 IRRA rewiring 76
Figure 4.10 Identification of SMA under recursive learning 79
Figure 4.11 Examples of dynamic dominators 81
Figure 4.12 Examples of error cancellation rules 82
Figure 4.13 Generalized wire addition and removal 82
Figure 4.14 Rectification network 83
Figure 4.15 Destination identification 86
Figure 4.16 Empirical runtime of IRRA 88
Figure 4.17 Empirical runtime of ECR 90
Figure 4.18 An error cancelled at dominator that does not have side input 92
Figure 4.19 Error propagation of w,_error 97
Figure 4.20 Error flow graphs (a) without semi-MA and (b) with semi-MA 98

List of Figures

xi

Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 4.27
Figure 4.28
Figure 4.29
Figure 4.30
Figure 4.31
Figure 4.32
Figure 4.33

Figure 4.34
Figure 4.35
Figure 4.36
Figure 4.37
Figure 4.38
Figure 4.39
Figure 5.1

Figure 5.2

Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14

Figure 5.15

Structural view of error cancellation

Example of flow-graph-based error cancellation rewiring (FECR)
Example of flow-graph-based error cancellation rewiring (FECR)
Example of B-cut and E-cut

Relationship between dominators and error cuts

Error propagation using dominators

Example of E-cuts and E-frontier shifting

Error propagation using error frontier

Flow of error-frontier-based error propagation

Locating new single-node frontier

Locating new multi-node frontier

Locating new error frontier with inconsistent path,,,,.-MA propagation

Relationship between (a) dominator-based propagation and (b)
error-frontier-based propagations

Construction of an error graph

Cut enumeration

Simplification of rectification networks by node merging

Structural view of n-to-m error cancellation

Sub-circuit for rewiring

Rewiring ability of CECR for different window sizes

Example of ODCs and node merging

Typical greedy decaying effect in bin-packing router

(Wu and Marek-Sadowska 1995)

Example of orthogonal greedy coupling (Wu and Marek-Sadowska 1995)
Difference between node merging and rewiring

Example of coupling rewiring and node merging

Rewiring for perturbation

Reduction of HPWL by logic rewiring

Estimation of HPWL of a single fanout net

Estimation of HPWL of multiple fanout nets

HPWL increase due to AW addition

Revised HPWL estimation when TW and AW have the same source
Revised HPWL estimation when AW is in the fanin cone of TW
Figure Slack distribution graph of an industrial design

Optimizing circuit from slack mountain boundary resulting in more delay
improvement

Example of AW selection

100
103
104
108
109
110
111
112
113
113
114
115

117
118
119
120
122
124
128
134

136
137
138
140
142
146
147
147
148
148
148
152

153
155

xii

List of Figures

Figure 5.16
Figure 5.17

Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31
Figure 5.32
Figure 5.33
Figure 5.34
Figure 5.35
Figure 5.36
Figure 5.37
Figure 5.38
Figure 5.39
Figure 5.40

Fanout gates of TW and AW 156
Slack mountain being smoothed down by timing optimization (valley

areas are not shown for clarity) 159
Example of ECO path optimization 160
NEeGo-RouT flow 163
RESTRUCTURING flow 164
Framework flow 166
Rewiring improvement upon already optimal graph-based tech map 169
Conventional FPGA EDA flow 184
Alternative function construction using MAs 186
Layout-driven synthesis using alternative functions 188
Example of external/internal wires 189
Example of postlayout logic perturbation by ATPG-based rewiring 189
Example of multiple-wire addition 190
Example of extra LUT addition 190
Rules for identifying alternative candidates 191
Example of an “existing” alternative wire (K = 3) (Rule 2) 192
Example of gate duplication in technology mapping (K = 4) 193
Example of destination LUT expansion (/X = 4) (Rule 4) 193
Work flow of rewiring-based FPGA router 196
Example of clock gating implementation 200
Flip-flops that are mutually unobservable 201
Examples of clock gating 202
Rewiring strategy | 203
Rewiring strategy 11 204
Rewiring strategy I11 204

List of Tables

Table 1.1
Table 2.1
Table 2.2
Table 2.3
Table 3.1

Table 3.2

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6

Table 4.7
Table 4.8
Table 4.9
Table 4.10
Table 4.11
Table 5.1

Table 5.2
Table 5.3
Table 5.4
Table 5.5

Behavior of the basic Boolean operators

Truth table and minterms of logical AND function
SPFDs of the gates in Figure 2.16

SPFDs of the gates in Figure 2.21

Comparison of rewiring ability of SPFD-based rewiring algorithms for
four-LUT FPGA designs

Comparison of rewiring ability for different atomic SPFD assignment
methods

CPU time analysis for IRRA

CPU time analysis for ECR

Comparison on combinational benchmarks between IRRA and ECR
Comparison on sequential benchmarks between IRRA and ECR
Comparison on combinational benchmarks between NAR and ECR

FPGA technology mapping for ILR combined with different rewiring
engines on optimized benchmarks, LUT size = 4

Comparison between ECR and FECR
Comparison between ECR, FECR, and CECR
Detailed statistics for CECR

Effectiveness of windowing technique
Effectiveness of different windowing sizes

Experimental results of area reduction by using approaches in Plaza et al.
(2007) and Chen and Wang (2010) and our approach

Iterations of optimization in our approach
Benchmark information
Real versus estimated HPWL reduction

Effectiveness of our framework for wirelength reduction of placement and
global routing

96
106
125
126
127
127

144
145
150
150

151

List of Tables

xiv
Table 5.6 Effectiveness of our algorithm compared to the traditional peak-first
algorithm and a recent work 158
Table 5.7 Comparison of our algorithm and the DCP algorithm 168
Table 5.8 Results of depth-ILR followed by area-ILR with FlowSYN (A" = 5) 174
Table 5.9 Result of area-ILR over DAOMap (K = 4) 175
Table 5.10 Result of area-ILR over DAOMap (K = 6) 175
Table 5.11 Result of Area-ILR over IMap (K = 4) 176
Table 5.12 Result of Area-ILR over IMap (K = 6) 177
Table 5.13 Result of Area-ILR over imfs + lutpack in ABC(K = 6) 178
Table 5.14 Result of Area-ILR on Commercial Benchmarks (K = 4) 179
Table 5.15 Effect of area-ILR on VPR Delay performance (K = 4) 181
Table 5.16 Effect of area-ILR on delay performance in commercial FPGAs (K = 6) 182
Table 5.17 Result of area-ILR on circuits synthesized by BDS-pga (K = 4) 183
Table 5.18 ¢(i): Number of terminals versus net weight 195
Table 5.19 Experimental results on rewiring-based FPGA router 197
Table 5.20 Experimental results on rewiring-based technology mapping and routing 197
Table 5.21 Postlayout optimization by SPFD-ER 198
Table 5.22 Total cell areas of the circuits 205
Table 5.23 Power dissipation statistics 206

Preface

Our group has been working on wire-based logic restructuring (rewiring) for over a decade.
Over the years, we have published numerous conference and journal papers on rewiring. As
a recent major milestone, we have developed a rewiring scheme that reaches a near-complete
rewiring rate (96%). This result demonstrates the high power of this kind of logic trans-
formation techniques and the great potential of applying them on modern electronic design
automation (EDA) tools.

Because of the aggressive and continuous scaling down of transistor sizes, to 45, 22 nm,
and even below 16 nm, wires have become a dominant factor affecting circuit performance.
Hence, rewiring is particularly suitable for today's nanometer technologies.

We could not find a book that focuses on and discusses rewiring techniques. Since rewiring
techniques have become much more practical in nanometer technologies, we felt there was a
need to publish a reference book to provide readers with the key ideas.

This book is of introductory to intermediate level. We hope this book will help in popular-
izing science, and the readers will find this book interesting and informative.

Tak-KEr LaM, WAI-CHUNG TANG, XING WEL,
Y1 Diao, AND DavID Yu-LIANG WU

Introduction

The concepts of various major rewiring techniques are explained throughout the book grad-
ually. First, readers will be presented with the basic ideas of rewiring. Next, the technical
details of each kind of rewiring technique will be discussed in detail. Finally, the applications
of rewiring techniques in various electronic design automation (EDA) areas will be introduced.

Intended Audience

Students studying computer/electronic engineering, academic staff, and even EDA engineers
are the intended readers of this book. The readers should have some basic knowledge of
Boolean algebra, logic gates, and graph theory. For readers without the related advanced
knowledge, essential concepts will be introduced and explained throughout the book.

Type Conventions

The following conventions are used in this book:

e Mathematical symbols and names of circuit elements, such as a and «v, are typeset in this

font.
e Codes are typeset in this font.

Acknowledgments

Many people have contributed to this book in the forms of research output, implementations
of algorithms, suggestions for content, and, last but not least, simply being encouraging. This
book could never have been completed without their generous effort. We are very grateful to
the following people for all they have done:

e The authors of RAMBO, REWIRE, RAMFIRE, GBAW. IRRA, NAR, ECR, FECR. CECR,
SPFED-based and all other rewiring techniques.
e The authors of the typesetting system I4TEX and the plugins.

Contents

List of Figures

List of Tables

Preface

Introduction

1 Preliminaries

1.1 Boolean Circuits

1.2 Redundancy and Stuck-at Faults

1.3 Automatic Test Pattern Generation (ATPG)

1.4 Dominators

1.5 Mandatory Assignments and Recursive Learning

1.6 Graph Theory and Boolean Circuits
References

2 Concept of Logic Rewiring

2.1 What is Rewiring?

2.2 ATPG-based Rewiring Techniques
2.2.1 Add-First
2.2.2 Delete-First

2.3 Non-ATPG-based Rewiring Techniques
2.3.1 Graph-based Alternate Wiring (GBAW)
2.32 SPFD

2.4 Why are Rewiring Techniques Important?
References

3 Add-First and Non-ATPG-Based Rewiring Techniques

3.1 Redundancy Addition and Removal (RAR)

3.1.1 RAMBO
3.1.2 REWIRE
3.1.3 RAMFIRE

3.1.4 Comparison Between RAR-Based Rewiring Techniques

xiii
XV

xvii

SN R —

37
37
37
38
41
43

Contents

vi
3.2 Node-Based Network Addition and Removal (NAR) 43
3.2.1 Node Merging 43
3.2.2 Node Addition and Removal 48
3.3 Other Rewiring Techniques 51
3.3.1 SPFD-Based Rewiring 51
References 65
4 Delete-First Rewiring Techniques 67
4.1 IRRA 69
4.1.1 Destination of Alternative Wires 71
4.1.2 Source of Alternative Wires 72
42 ECR 76
4.2.1 Destination of Alternative Wires 80
4.2.2 Source of Alternative Wires 85
4.2.3 Overview of the Approach of Error-Cancellation-Based Rewiring 86
4.2.4 Complexity Analysis of ECR 87
4.2.5 Comparison Between ECR and Other Resynthesis Techniques 90
4.2.6 Experimental Result 92
43 FECR 96
4.3.1 Error Flow Graph Construction 97
4.3.2 Destination Node Identification 98
4.3.3 Source Node Identification 102
4.3.4 ECR is a Special Case of FECR 104
4.3.5 Complexity Analysis of FECR 105
4.3.6 Experimental Result 105
4.4 Cut-Based Error Cancellation Rewiring 107
4.4.1 Preliminaries 107
4.4.2 Error Frontier 109
4.4.3 Cut-Based Error Cancellation Rewiring 117
4.4.4 Verification of Alternative Wires 121
4.4.5 Complexity Analysis of CECR 122
4.4.6 Relationship Between ECR, FECR, and CECR 122
4.4.7 Extending CECR for n-to-m Rewiring 123
4.4.8 Speedup for CECR 124
4.4.9 Experimental Results 125
References 129
5 Applications 133
5.1 Area Reduction 133
5.1.1 Preliminaries 134

5.1.2 Our Methodology (*Long tail” vs “Bump tail” Curves) 135

Contents

52

54

5.5

5.6

Index

5.1.3 Details of our Approach

5.1.4 Experimental Results

Postplacement Optimization

5.2.1 Wire-Length-Driven Rewiring-Based Postplacement Optimization
5.2.2 Timing-Driven Rewiring-Based Postplacement Optimization
ECO Timing Optimization

5.3.1 Preliminaries

5.3.2 NEeGo-Rourt Operation

5.3.3 Path-Restructuring Operation

5.3.4 Experimental Results

Area Reduction in FPGA Technology Mapping

5.4.1 Incremental Logic Resynthesis (ILR): Depth-Oriented Mode
5.4.2 Incremental Logic Resynthesis (ILR): Area-Oriented Mode
5.4.3 Experimental Results

5.4.4 Conclusion

FPGA Postlayout Routing Optimization

5.5.1 Optimization by Alternative Functions

5.5.2 Optimization with Mapping-to-Routing Logic Rewirings
5.5.3 Optimization by SPFD-Based Rewiring

Logic Synthesis for Low Power Using Clock Gating and Rewiring
5.6.1 Mechanism of Clock Gating

5.6.2 Rewiring-Based Optimization

References

Summary

140
143
145
145
151
158
160
161
164
166
167
170
171
173
183
184
185
187
198
199
199
203
207

211

213

1

Preliminaries

1.1 Boolean Circuits

A Boolean variable is a variable whose value can only be either O (false) or 1 (true) or
unknown. Every Boolean variable has two literals. They are the normal form and the
negation/complement of the variable. The negation of a variable always evaluates to the
opposite value of the variable. Suppose v is a Boolean variable; then its negation is v. When
v is 1, 0 is 0; when v is 0, © is 1. The literals of variable v are then v and ©.

A function consisting of Boolean variables is known as a Boolean function. It is a mapping
between Boolean spaces. For example, the function f : B™ — B™ is a mapping between
the input space of /m Boolean variables and the output space of n Boolean variables. We
use [(xy.&y......2x,, .,) to indicate the input variables or input values of the Boolean
function f.

The mapping between Boolean spaces is achieved by Boolean operators. The basic Boolean
operators (operations) AND, OR, NOT, XOR, and XNOR are denoted as -, +, ~, ¢, and &,
respectively, in this book. We may omit the symbol - for clarity. The behavior of the basic
operators is listed in Table 1.1. Complex Boolean operators can be derived from these basic
operators. In fact, only AND and NOT, or only OR and NOT, are sufficient to derive all other
Boolean operations.

An example of Boolean function is f(a,b) = a - b, which computes the logical conjunction
of variables @ and b. A Boolean function may contain literals. The Boolean function
f(a,b) = a - bis such an example that computes the logical conjunction of variable a and the
negation of variable b. It may be surprising for readers who are not familiar with Boolean alge-
bra to see a function f(a, b, ¢) = a - b. This function is actually nothing special but is normal
and valid. It just means that, among the three variables, the value of variable ¢ is “don’t care.”
That is to say, the value of ¢ can be either O or 1, and f(a, b, ¢) = ab = abé + abe. For another
example, the function f(a,b.c) = (a+b) can be expanded into f(a,b,¢)= (a+0b) =
(a+b)e+ (a+b)e.

Observability don’t cares (ODCs) (Damiani and De Micheli 1990) of a Boolean variable
are the conditions under which the variable is not affecting any of the primary outputs. For
example, if an input / of an AND gate has the controlling value 0, its set of other inputs .J are
unobservable no matter what values they have. The ODC of .J is i. Satisfiability don’t cares

Boolean Circuit Rewiring: Bridging Logical and Physical Designs, First Edition.
Tak-Kei Lam, Wai-Chung Tang, Xing Wei, Yi Diao and David Yu-Liang Wu.
© 2016 John Wiley & Sons Singapore Pte Ltd. Published 2016 by John Wiley & Sons Singapore Pte Ltd.

2 Boolean Circuit Rewiring

Table 1.1 Behavior of the basic Boolean operators

Operator ~ When will it returns true?

AND - All of its operands are true

OR + Any one of its operands is true

NOT ~ Its operand is false

XOR & Both of its operands have different values

XNOR & Both of its operands have the same values

(SDCs) of a circuit node represent the local input patterns at the node that cannot be generated
by the node’s fanins. As a trivial example of SDC, if we connect all inputs of a two-input AND
gate to a common signal, the values of its inputs can never be {1,0} or {0, 1}.

Many rules in ordinary algebra, such as commutative addition and multiplication, associa-
tive addition and multiplication, and variable distribution, can be applied into Boolean algebra.
Therefore, function f(a,b,¢) = (a+b) = (a+b)é+ (a+b)ec = ac + bé + ac + be. For
each of the conjunction term, it can be expanded by connecting it with all combinations of
the literals of the missing variables by conjunction. Some additional important rules that are
obeyed in Boolean algebra only include @ - @ = a and a + a = a. Regarding our example, it
can be expanded as follows:

fla,b,c) = (a+b)

= (a+b)c+ (a+b)e
= (ac + bé) + (ac + be)
(

abé + abé + abé + abe) + (abe + abe + abe + abe)

abé + abe + abé + abe + abe + abe

Other rules can be derived from the basic rules easily. Since Boolean algebra is a vast area
of study, even the elementary topics can cover a whole book. In this book, we shall not cover
every detail.

Boolean functions can be realized in hardware using logic gates. A Boolean circuit or
Boolean network is composed of gates and implements some Boolean functions. We simply
use circuits or networks to represent Boolean circuits when the meaning is clear in the context.
Figure 1.1 illustrates the logic gates implementing the basic Boolean functions. An example
circuit composed of AND, OR, and NOT gates is shown in Figure 1.2(b). For gate e, its inputs
are a and b, so it is implementing the function a + b. Regarding gate f, its funcnon isa-b.

A less famous Boolean operator is the cofactor. The cofactor of a Boolean func-
tion f(wy,xy, ... @, ,x,) with respect to a variable , is Floy = floy, 29, ...,
B Li By 5 o5 o o8 I'y_1,%,). Suppose f = ab-+c, fla =b+ec, and f|.=ab+1=1.
Similarly, the cofactor of a Boolean function f(w,z,, ...z, ,,,) with respect to the
complement of a variable &, is | = f(z), 2y, ... 7,‘ 120,24 5. s, y.,). Suppose
f=ab+ ¢, f|, =0-b+ ¢ = c. Every Boolean functlon can be expressed usmg Shannon’s
expansion. For example flx)=a- f|, +7 - f|,. An example of a function with multiple

InpU[SINf(I Yz, w) hTUf'll/_*—IUjITJ+ij|LJ+ayfII1/

Preliminaries

anp =)
NOT —{>°—
o >
T

Figure 1.1 Basic logic gates

(a)

Figure 1.2 Directed acyclic graph representation of a circuit. (a) A directed acyclic graph; (b) a Boolean
cireuit

