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Preface

The study of triangulations of topological spaces has always been at the root
of geometric topology. Among the most studied triangulations are piecewise
linear triangulations of high-dimensional topological manifolds. Their study
culminated in the late 1960s-early 1970s in a complete classification in the
work of Kirby and Siebenmann. It is this classification that we discuss
in this book, including the celebrated Hauptvermutung and Triangulation
Conjecture.

The goal of this book is to provide a readable and well-organized exposi-
tion of the subject, which would be suitable for advanced graduate students
in topology. An exposition like this is currently lacking. The foundational
monograph of Kirby and Siebenmann [KS2| proving the classification was
written on the heels of the proof. It contains all the necessary ingredients
but, written in the form of essays, can hardly serve as an exposition. An-
other very useful source of information on the subject, the book of Ranicki
[Ran], has the same drawback as being a collection of research papers.

In this book, I attempted to give a panoramic view of the theory. Given
in how many different directions this theory branches out, I took special
care not to lose sight of the forest for the trees. For instance, I chose
to merely state several well-known theorems, providing references to well-
written proofs available in the literature.

Acknowledgments. The work was partially supported by Max-
Planck of Mathematics, Bonn, and by a grant from the Simons Foundation
(#209424 to Yuli Rudyak). I express my best thanks to Andrew Ranicki-
who read the first version of the manuscript and did many useful remarks
and comments. I am grateful to Hans-Joachim Baues, Moris Hirsch, Tom
Farrell, and Nikolai Saveliev for useful discussions. I am also grateful to
Rochelle Kronzek, E. H. Chionh and Rajesh Babu of World Scientific for

the help in preparing the manuscript for publication.

Yuli Rudyak, Gainesuille, Florida, November 2015
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Introduction

Throughout this volume we use abbreviation PL for “piecewise linear”.

For introduction to PL topology, including definitions of simplicial com-
plexes, polyhedra, PL maps, etc. see [Hud, RS]

Hauptvermutung (main conjecture) is an abbreviation for die Hauptver-
mutung der kombinatorischen Topologie (the main conjecture of combina-
torial topology). It seems that the conjecture was formulated in the papers
of Steinitz [Ste] and Tietze [Ti] in 1908. This is also stated in [AH].

The conjecture states that the topology of a simplicial complex deter-
mines completely its combinatorial structure. In other words, two simpli-
cial complexes are simplicially isomorphic whenever they are homeomor-
phic. This conjecture was disproved by Milnor [Mi2] in 1961. In fact,
Milnor found a pair of homeomorphic simplicial complexes such that the
Whitehead torsion of this pair is non-trivial. See Cohen [C] for a textbook
account.

Note, however, that the Whitehead torsion cannot distinguish homeo-
morphic manifolds, [KS1,C]. Thus, in case of manifolds, one can propose a
refined version of the Hauptvermutung by considering simplicial complexes
with natural additional restrictions. A ecombinatorial triangulation is de-
fined to be a simplicial complex such that the star of every point (the union
of all closed simplexes containing the point) is simplicially isomorphic to the
n-dimensional ball. A PL manifold, or combinatorial manifold is defined
to be a topological manifold M together with a homeomorphism M — K
where K is a combinatorial triangulation. Equivalently, a PL, manifold can
also be defined as a manifold equipped with a maximal PL atlas.

There exist topological manifolds that are homeomorphic to a simplicial complex but
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xii Introduction

do not admit a PL structure (non-combinatorial triangulations), see Example 3.5.5. Fur-
thermore, there exist topological manifolds that are not homeomorphic to any simplicial

complex, see Example 3.5.7.

Now, the Hauptvermutung for manifolds is the conjecture that any two
homeomorphic PL manifolds are PL. homeomorphic. The related Combina-
torial Triangulation Conjecture states that every topological manifold ad-
mits a PL structure, i.e., can be triangulated by a PL manifold. Both these
conjectures were disproved by Kirby and Siebenmann [Sieb4, KS1,KS2]. In
fact, Kirby and Siebenmann classified PL structures on high-dimensional
(= 5) topological manifolds. It turned out that a topological manifold can
have different (not PL homeomorphic, non-concordant) PL structures, as
well as having no PL structures. Now we give a brief description of these
results.

In dimensionals < 3 every topological manifold admits a PL structure that is unique
up to PL homeomorphism, see [Rad, P, Mo|. The classifcation of PL structures on 4-
dimenaional topological manifolds is not completed yet, cf. [FQ,K2].

Let BTOP and BPL be the classifying spaces for stable topological and
PL (micro)bundles, respectively. We regard the forgetful map

a: BPL — BTOP
as a fibration and denote its homotopy fiber by TOP/PL.

Let f: M — BTOP classify the stable tangent bundle of a topological
manifold M. By the main properties of classifying spaces, every PL struc-
ture on M gives us an a-lifting of f and that every two such liftings for the
same PL structure are fiberwise homotopic.

It is remarkable that the converse is also true if dim M > 5, see [LR1,
KS2|]. In greater detail, M admits a PL structure if f admits an a-lifting
(the Ezistence Theorem 1.7.4), and concordance classes of PL structures
on M are in a bijective correspondence with fiberwise homotopy classes
of a-liftings of f (the Classification Theorem 1.7.2). So, the homotopy
information on the space TOP/PL is extremely useful in PL classifying
of topological manifolds. Fortunately, Kirby and Siebenmann have made
great progress there: they proved the following

Main Theorem: There is a homotopy equivalence

TOP/PL ~ K(Z/2.3).
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Thus, there is at most one possible obstruction
w(M) € H(M;n3(TOP/PL)) = H*(M;Z/2)

to an a-lifting of the map f.

In particular, a topological manifold M, dim M > 5 admits a PL struc-
ture if and only if 2(M) = 0. Furthermore, the set of fiberwise homo-
topic a-liftings of f (if they exist) is in a bijective correspondence with
H3(M;Z/2). At manifolds level, we can say that every homeomorphism
h:V — M of a PL manifold V yields a class

x(h) € H*(M;Z/2),

and »(h) = 0 if and only if A is concordant to the identity map 1as. More-
over, every class a € H3(M;Z/2) has the form a = s(h) for some homeo-
morphism b : V — M of two PL manifolds.

These results yield the complete classification of PL structures on a
topological manifold of dimension > 5. In particular, the situation with
Hauptvermutung turns out to be understandable. See Section 3.4 for more
detailed exposition.

We would like to explain the following. It can happen that non-
concordant PL structures on M yield PL homeomorphic PL manifolds (like
that two p-liftings f1,f2 : M — BPL of f can be non-fiberwise homo-
topic). Indeed, a PL map M — M of a PL manifold M can turn the
atlas into a non-concordant to the original one, see Example 3.5.3. So, in
fact, the set of pairwise non-concordant PL manifolds which are homeo-
morphic to a given PL manifold is in a bijective correspondence with the
set H3(M;Z/2)/R where R is the following equivalence relation: two con-
cordance classes of PL structures are equivalent if the corresponding PL
manifolds are PL homeomorphic. The Hauptvermutung for manifolds states
that the set H3(M;Z/2)/R is a singleton for all M. But this is wrong in
general.

Namely, there exists a PL manifold M which is homeomorphic but not
PL isomorphic to RP™,n > 5, see Example 3.5.1. So, here we have a
counterexample to the Hauptvermutung.

To complete the picture, we mention again that there are topological
manifolds that do not admit any PL structure, see Example 3.5.4. More-
over, there are manifold that cannot be triangulated as simplicial com-
plexes, see Example 3.5.7.
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Recall that every smooth manifold admits a canonical PL struc-
ture [Cai, W], while every PL manifold is, tautologically, a topological
manifolds. Now we compare the classes of smooth, PL and topological
manifolds, and see that there is a big difference between first and second
classes, and not so big difference between second and third ones. From
the homotopy-theoretical point of view, one can say that the space PL/O
(which classifies smooth structures on PL manifold, see Remark 1.7.8)
has many non-trivial homotopy groups, while the space TOP/PL is an
Eilenberg MacLane space. Geometrically, one can mention that there are
many smooth manifolds which are PL homeomorphic to standard sphere
S™ but pairwise non-diffeomorphic [KM], while any PL manifold M™,n > 5
is PL homeomorphic to S™ provided that M is homeomorphic to S™, [Smal.

It is interesting and worthwhile to go one step deeper and explain the

following. Recall that a manifold M is called almost parallelizable if M
becomes parallelizable after deletion of a point. Let U,f (resp. or,’: L resp.
o{op ) denote the minimal positive integer number which can be realized
as the signature of the closed smooth (resp. PL, resp. topological) almost
parallelizable 4k-dimensional manifold. Clearly, o-f > af E> az_“OP .

Let B,, denote the mth Bernoulli numbers, see [Wash| (we use the even

index notation, i.e., Bo,+; = 0). It turns out to be that
of =16 and of = 2271(22%=1 _ 1) numerator (4B /k) for k > 1.

See [Ro] for k = 1 and [MK] or [MS, Appendix B] for k£ > 1. In particular,
oy strictly increases with respect to k.

P TOP

Concerning the numbers ¢”% and o , it turns out to be that

Pt =16 and ofX = 8 for all k > 1,
and

ol OF =8 for all k.

First, for all £ the number 8 divides the number ¢}, by purely algebraic reasons, [Br2,
Proposition II1.1.4]. Furthermore, crf L= af = 16 since there is no difference between
PL and smooth cases up to dimension 6, see 1.7.8. Let W** be a 4k-dimensional smooth
manifold with boundary (Milnor’s pumbing) described in [Br2, Theorem V.2.1]. This is
a parallelizable manifold of signature 8. Furthermore, for k > 1 the boundary dW4F is
a homotopy sphere. Hence, OW?** is PL homeomorphic to the standard sphere by the
Smale Theorem [Sma]. So, the cone C' = C(@W*) is PL homeomorphic to the standard
disk, and we get a closed almost parallelizable PL manifold W4* U, y-ax € of signature
8.

To prove that O'TOP = 8, consider the plumbing W = W% as above. Now
its boundary W is not simply-connected, but it is a homology 3-sphere. Freedman
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[F, Theorem 1.4'] proved that OW bounds a contractible topological 4-manifold P (in
fact, this holds for any homology 3-sphere). Now, the the space

W Ugw P

is a closed almost parallelizable topology manifold of signature 8.

So, a’”{op = J,fL > cr,f for k£ > 1, and we see again that there is a big
difference between smooth and PL cases and not so big difference between
PL and topological cases. Nevertheless, the last difference does not vanish,

and the numerical inequality
=piltalF =3

occurs whenever we meet a contrast between PL and topological world. For
example, we will see below that the number

2 =16/8 = of L JoTOF
is another guise of the number

2 = the order of the group m3(TOP/PL).

In this context, it makes sense to notice about low-dimensional mani-
folds, because of the following remarkable contrast. There is no difference
between PL and smooth manifolds in dimension < 7: every PL manifold
V™ n < 7 admits a smooth structure that is unique up to diffeomorphism.
However, there are infinitely many smooth manifolds which are homeomor-
phic to R* but pairwise non-diffeomorphic, see Section 3.5, Summary.

Concerning the description of the homotopy type of TOP/PL, we have
the following. Because of the Classification Theorem, if £ +n > 5 then
the group 7,(TOP/PL) is in a bijective correspondence with the set of
concordance classes of PL structures on RF x S™. However, this set (of
concordance classes) looks wild and uncontrollable. In order to make the
situation more manageable, we consider PL structures on the compact man-
ifold 7™ x S* and then extract the necessary information about the universal
covering R™ x S* from here. We can’t do it directly, but there is a trick
(the Reduction Theorem 1.9.7 that is based by ideas of Kirby) which al-
lows us to estimate PL structures on R™ x S* in terms of the so-called
homotopy PL structures on T™ x S* (more precisely, we should consider
the homotopy PL structures on 7 x D* modulo the boundary), see Sec-
tion 1.4 for the definitions. Now, using results of Hsiang and Shaneson [HS]
or Wall [W3, W4] about homotopy PL structures on 7™ x D¥ | one can prove
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that m;(TOP/PL) = 0 for i # 3 and that m3(TOP/PL) has at most 2 ele-
ments. Finally, there exists a high-dimensional topological manifold which
does not admit any PL structure (Corollary 1.8.4, Remark 1.8.6). Hence,

by the Existence Theorem, the space TOP/PL is not contractible. Thus,
TOP/PL ~ K(Z/2,3).

For better arrangement of the previous matter, look at the graph located
after the Introduction. We formulate without proofs the boxed statements
(and provide the necessary preliminaries and references) there, while in
Chapter 1 we explain how a statement (box) can be deduced from others,
accordingly with the arrows in the graph.

Let me comment the top box of the graph. Sullivan [Sull, Sul2]
proved that the Hauptvermutung holds for simply-connected closed mani-
folds M,dim M > 5 with H3(M) 2-torsion free.

In greater detail, let G,, be the monoid of homotopy self-equivalences
Sn=l 5 §n=1 let BG, be the classifying space for G, and let BG =
lim;,,—,oc BG,,. There is an obvious forgetful map BPL — BG (delete zero
section), and we denote the homotopy fiber of this map by G/PL. For
every homotopy equivalence of closed PL manifolds h : V — M, Sullivan
defined the normal invariant of h to be a certain homotopy class jg(h) €
[M,G/PL], see Section 1.5.

Let M,dim > 5 be a closed PLL manifold such that H3(M) is 2-torsion
free. Sullivan proved that, for every homeomorphism h : V. — M, we
have jg(h) = 0. Moreover, this theorem implies that if, in addition, M
is simply-connected then A is homotopic to a PL homeomorphism. So, as
we already noted, the Hauptvermutung holds for simply-connected closed
manifolds M, dim M > 5 with H3(M) 2-torsion free.

Definitely, the above-mentioned Sullivan Theorem on the Normal Invari-
ant of a Homeomorphism is important by itself. However, here this theorem
plays also an additional substantial role. Namely, the Sullivan Theorem for
T™ x S* is a lemma in classifying of homotopy structures on T™ x D¥, cf.
Section 1.6. For this reason we first prove the Sullivan Theorem for 77 x §*
(the top box), then use it in the proof of the Main Theorem, and then (in
Chapter 2) use the Main Theorem in order to prove the Sullivan Theorem
in full generality.

I decided to present a proof of the Sullivan Theorem in the volume,
Section 3.3 because the exposition in [Sul2| is quite intricate.

This volume is organized as follows. After the Introduction we present
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the above-mentioned graph, and the extensive comments of the graph ap-
pear in the first chapter. In other words, Chapter 1 contains the architec-
ture of the proof of the Main Theorem.

The second chapter contains a proof of the Sullivan Theorem on the
triviality of normal invariant of a homeomorphism for 7" x S*, i.e., we
attend the top box of the graph.

The third chapter contains some applications of the Main Theorem. We
complete the proof of the Sullivan Theorem on the triviality of the normal
invariant of a homeomorphism in full generality. Then we tell more on clas-
sification of PL manifolds and, in particular, on Hauptvermutung. Several
interesting examples are considered. Finally, we discuss the homotopy and
topological invariance of certain characteristic classes.



Graph

Here I present the graph, and after the picture I list the boxed claims, with
extraction the correspondent tags inside the body of the manuseript. Some
minor comments are given. Some theorems here are stated simpler than
those in the main text.

xXix



XX

Triviality on the normal invariant
of a homeomorphism V. — T x Sk

A

Homotopy PL structures on 7™ x DF

Graph

lgassiﬁcation Theorem |<—[Product Structure Theorem

Y

Reduction Theorem%—

Local

the self-homeomorphisms
l group

contractibility of

TOP/PL ~ K(x,3), 7 C Z/2

.

|

‘ Existence The()reml

A

Non-contractibility
of TOP/PL

Main Theorem: TOP/PL ~ K (Z/2,3)

Existence of high-dimensional topological manifolds
that admit no PL structures

Rokhlin Signature TheoremJ

‘ Freedman’s Example




Graph xxi

1. Triviality of the normal invariant of a homeomorphism
V=T x S~

This is Theorem 2.8.1: If an element z € Spr, (T™ x S*) can be represented
by a homeomorphism h : V — T% x 8", then jg(x) = 0.

Here and below we denote by Spr,(X) the set of equivalence classes of
homotopy triangulations of a topological manifold X.

2. Homotopy PL structures on 7™ x DF. This is Theorem 1.6.3:
Supposed that &+ n > 5. Then the following holds:

(i) if £ > 3 then the set Spr(T™ x D*) consists of precisely one (trivial)
element;

(i) if k < 3 then every element of Spr(T™ x D¥) can be finitely covered
by the trivial element;

(iii) the set Spr(T™ x D?) contains at most one element which cannot
be finitely covered by the trivial element.

3. Classification Theorem. This is Theorem 1.7.2: If dimM = 5
and M admits a PL structure, then the map

jTOP : TPL(A/I) — [AI TOP/PL]

is a bijection.
Here and below we denote by Tpp (X) the set of concordance classes of
PL structures on a topological manifold X. The map jrop defined in 1.5.1.

4. Product Structure Theorem. This is Theorem 1.7.1: For every
n > 5 and every k > 0, the map

e:Tpr(M)— Tpr(M x Rk)

is a bijection. Here the map e turns a PL strucrture on M into a PL
structure on M x R¥ in an obvious way: the product with R*. Roughly
speaking, this theorem establishes a bijection between (the concordance
classes of) PL structures on M and M x R*. The Classification Theorem
1.7.2 and the Existence Theorem 1.7.4 are consequences of the Product
Structure Theorem.

5. Reduction Theorem. This is Theorem 1.9.7. It reduces an evalu-
ation of groups m;(TOP/PL) to the evaluation of sets Sp(T™ x D¥).

6. Local contractibility of the homeomorphism group. This is
Theorem 1.9.1: The space of self-homeomorphisms of a compact manifold
M is locally contractible.
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7. TOP/PL ~ K(w,3), ® C Z/2. This is Theorem 1.9.8.

8. Existence Theorem. This is Theorem 1.7.4: A topological mani-
fold M with dim M > 5 admits a PL structure if and only if the tangent
bundle of M admits a PL structure.

9. Main Theorem: TOP/PL ~ K(Z/2,3). This is Theorem 1.9.9.
10. Non-contractibility of TOP/PL. This is Corollary 1.8.5.

11. Existence of high-dimensional topological manifolds that
admit no PL structures. See Corollary 1.8.4 and Remark 1.8.6 for such
examples.

12. Rokhlin Signature Theorem. This is Theorem 1.8.1: Let M be
a closed 4-dimensional PL manifold with w; (M) = 0 = ws(M). Then the
signature of M is divisible by 16.

13. Freedman’s Example. This is Theorem 1.8.2: There exists
a closed simply-connected topological 4-dimensional manifold V' with
w2 (V') = 0 and the signature equal to 8. This example provides the equality
oy OF =8,

Actually, the original Kirby—-Siebenmann proof of the Main Theorem
appeared before the Freedman’s example and therefore did not use the last
one, see Remark 1.8.6. However, as we have seen, the inequality of'l #
oTOP clarify relations between PL and topological manifolds, and thus
Freedman’s example should be (and is) incorporated in the exposition of
the global picture.



