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Preface

Recent technological advances in the last two decades have provided availability of
enormous amounts of data about large networks consisting of hundreds and thou-
sands of nodes. These so-called complex networks have non-trivial topological fea-
tures and can vary from technological networks to social networks to biological net-
works. The study of complex networks, sometimes referred to as network science,
has become a fundamental research area since then in various disciplines such as
mathematics, statistics, computer science, physics and biology.

These seemingly unrelated networks experimentally have been shown to have
common properties such as low average distance between their nodes, high local
densities and degree distributions with few high degree nodes and many low degree
nodes. Modeling and analysis of these networks based on experiments and evalua-
tions has become an active and attractive area of research with many potential results.
Graphs have been widely and successfully used to model computer networks, and it
seems graph theory is a promising tool also for complex networks. Although there
has been considerable amount of study and research on the modeling and analysis of
complex networks, the algorithms for these networks are relatively less investigated.

Whether a complex network is man-made such as the Internet or not such as a
protein interaction network, predicting its behavior is not a trivial task. Understand-
ing the functionality of complex networks provides us with insight to predict their
behavior and once we can estimate the behavior of a complex network based on its
functionality, we may be able to control its functionality. For example, if we can
understand the spreading pattern of an epidemic disease which in fact is a complex
network, we can estimate where it will most likely spread and can then take precau-
tions to stop it. In summary, controlling the functionality of a complex network is
one of the fundamental reasons to study these networks.

As a first step in their study, we need to specify and classify the properties of
complex networks. We can then use analytical tools to identify and analyze these
properties to understand them better. As an example, a group of entities that make
the complex network may be more closely related to each other than the rest of the
network. These groups called the clusters may have important processing effects on

xxiii
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the overall functionality of the network. If we can detect clusters in a social network
for example, we can locate these intense regions of activity in that network after
which we can investigate the role of these clusters in the functioning of the whole
network. Detection of these properties may be visually possible in a small network of
few tens of nodes but for a complex network of hundreds of thousands of nodes, we
need analytical tools and computational methods. Properties of complex networks
such as clustering depend on their topological properties and study of topological
properties of these networks provides insight to their functioning.

This book is about specifying, classifying, designing and implementation of
mostly sequential, and also parallel and distributed algorithms that can be used to an-
alyze mostly the static properties of complex networks. Our aim has been to identify
and describe a repertoire of algorithms that may be of use for any complex network.
The starting point was to identify fundamental and mostly topological properties
which are static in general and evaluation of these properties which requires efficient
algorithms. The problems encountered are NP-hard in many cases and we need to
rely on approximation algorithms where sub-optimal solutions in polynomial time
can be found. Sometimes, using heuristic algorithms may be the only choice and
extensive tests are needed to support that the algorithm works for most of the cases.
Parallel algorithms aim at performance and provide efficiency for computation in-
tensive tasks to be performed and we present several parallel algorithms. Distributed
algorithms reach a decision by local information and are usually the only choice
in computer networks. Design and implementation of parallel and distributed algo-
rithms received little attention for complex networks in the past and are promising
areas for potential research in these networks.

An important static topological property of a complex network is its centrality
measure which shows the importance of a node or an edge in the network. Clustering
or community detection is another fundamental topological complex network prop-
erty and provides information about groups of nodes in the complex networks which
have closer relations among them than the rest of the network. Discovery of motifs
which are patterns occurring more than any other patterns, possibly indicating a ba-
sic function in the network is another important property of the complex networks.
Evaluation of such measures using sequential, approximation, heuristic, parallel and
distributed algorithms provides us with significant information about a particular net-
work. We can then improve the modeling of the network, understand its function
better and possibly predict the behavior of the network.

The style we have adopted is to keep everything as simple as possible, to be
able to guide a beginning researcher or a student with virtually no background in the
field of complex networks. The language used is mathematical rather than descriptive
most of the time; however, a basic discrete mathematics and algorithms background
at undergraduate level is sufficient to follow the material. Again, to aid the beginner
in the field, most of the algorithms are provided in ready-to-be-executed form to test.

The book is divided into three parts. Part I provides the basic background in terms
of the graph theory; algorithms and complexity and the specification of the parame-
ters for the analysis of complex networks. In Part I1, we provide a survey of important
algorithms for the analysis of complex networks, starting with distance and centrality
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algorithms. We then describe algorithms to construct and detect special subgraphs in
complex networks, which may be used for other tasks such as clustering. A survey
of data and clustering algorithms is also presented and this part concludes by the
description of the network motif discovery algorithms. Part III is about case studies
of complex networks and we show the implementation of some of the algorithms
we have described in real-life networks such as the protein interaction networks, the
social networks and the computer networks.

I would first like to thank graduate students at Izmir University who were concur-
rently taking a related course at the time of the writing of this text and were presented
part of the material. I would like to thank Esra Ruzgar and Can lleri for their feed-
back and especially Vedat Kavalci for proofreading of several chapters. I would like
to thank CRC Press publisher Rich O’Hanley who has always been very kind, sup-
portive and encouraging. I also thank Stephanie Morkert who was prompt and ever
willing to help in the editing process and Michele Dimont for final editing.

K. Erciyes
Izmir, Turkey
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