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Preface

The First International Conference on Algorithms and Discrete Applied
Mathematics was held during February 8-10, 2015, at the Indian Institute of
Technology, Kanpur, India. This event was organized by the Department of
Computer Science and Engineering, Indian Institute of Technology Kanpur. The
workshop covered a diverse range of topics on algorithms and discrete mathe-
matics, comprising computational geometry, algorithms including approximation
algorithms, graph theory and computational complexity. This volume contains
26 contributed papers presented during CALDAM 2015. There were 58 submis-
sions from 10 countries. These submissions were carefully reviewed by the Pro-
gram Committee members with the help of external reviewers. Pavol Hell and
C.R. Subramanian delivered excellent invited talks whose abstracts are included
in this volume.

We would like to thank the authors for contributing high-quality research
papers to the workshop. We express our thanks to the Program Committee
members and the external reviewers for their active participation in reviewing the
papers. We thank Springer for publishing the proceedings in the reputed Lecture
Notes in Computer Science series. We thank our invited speakers Pavol Hell and
C.R. Subramanian. We thank the Organizing Committee chaired by Surender
Baswana and the CSE IIT Kanpur technical team B.M. Shukla, Meeta Bagga,
Nagendra Yadav and Adarsh Jagannatha from CSE IIT Kanpur, for the smooth
functioning of the workshop. We thank the chair of the Steering Committee,
Subir Ghosh, for his active help, support and guidance throughout. We thank our
sponsor Google Inc. for their financial support. Finally, we thank the EasyChair
conference management system which was very effective in handling the entire
reviewing process.

November 2014 Sumit Ganguly
Ramesh Krishnamurti
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Invited Talk (Abstracts)



Obstruction Characterizations
in Graphs and Digraphs

Pavol Hell

School of Computing Science, Simon Fraser University, Canada

Abstract. Some of the nicest characterizations of graph families are
stated in terms of obstructions — forbidden induced subgraphs or other
substructures. A typical example characterizes interval graphs by the ab-
sence of asteroidal triples and induced cycles of length greater than three.
1 will discuss similar obstruction characterizations for classes of digraphs.
The obstructions are novel, but similar in spirit to asteroidal triples.
Surprisingly, these obstructions permit new characterizations even for
undirected graphs. In particular, I will describe the first obstruction
characterization of circular arc graphs, and a corresponding certifying
polynomial time recognition algorithm for this graph class. The digraph
results are joint with Arash Rafiey, Jing Huang, and Tomas Feder, and
the circular arc graph characterization and algorithm results are joint
with Juraj Stacho and Mathew Francis.



Probabilistic Arguments in Graph Coloring

C.R. Subramanian

The Institute of Mathematical Sciences,
Taramani, Chennai - 600 113, India
crs@imsc.res.in

Abstract. Probabilistic arguments has come to be a powerful way to
obtain bounds on various chromatic numbers. It plays an important role
not only in obtaining upper bounds but also in establishing the tightness
of these upper bounds. It often calls for the application of various (often
simple) ideas, tools and techniques (from probability theory) like mo-
ments, concentration inequalities, known estimates on tail probabilities
and various other probability estimates. A number of examples illus-
trate how this approach can be a very useful tool in obtaining chromatic
bounds. For many of these bounds, no other approach for obtaining them
is known so far. In this talk, we illustrate this approach with some spe-
cific applications to graph coloring. On the other hand, several specific
applications of this approach have also motivated and led to the devel-
opment of powerful tools for handling discrete probability spaces. An
important tool (for establishing the tightness results) is the notion of
random graphs. We do not necessarily present the best results (obtained
using this approach) since the main purpose is to provide an introduction
to the power and simplicity of the approach. Many of the examples and
the results are already known and published in the literature and have
also been improved further.
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Probabilistic Arguments in Graph Coloring
(Invited Talk)

C.R. Subramanian

The Institute of Mathematical Sciences,
Taramani, Chennai - 600 113, India
crsQimsc.res.in

Abstract. Probabilistic arguments has come to be a powerful way to
obtain bounds on various chromatic numbers. It plays an important role
not only in obtaining upper bounds but also in establishing the tightness
of these upper bounds. It often calls for the application of various (often
simple) ideas, tools and techniques (from probability theory) like mo-
ments, concentration inequalities, known estimates on tail probabilities
and various other probability estimates. A number of examples illus-
trate how this approach can be a very useful tool in obtaining chromatic
bounds. For many of these bounds, no other approach for obtaining them
is known so far. In this talk, we illustrate this approach with some spe-
cific applications to graph coloring. On the other hand, several specific
applications of this approach have also motivated and led to the devel-
opment of powerful tools for handling discrete probability spaces. An
important tool (for establishing the tightness results) is the notion of
random graphs. We do not necessarily present the best results (obtained
using this approach) since the main purpose is to provide an introduction
to the power and simplicity of the approach. Many of the examples and
the results are already known and published in the literature and have
also been improved further.

1 Introduction

We mostly focus on simple undirected graphs G = (V| E). A proper k-coloring of
G is any map f : V — [k] which satisfies f(u) # f(v) for every uv € E. Here, [k]|
denotes {1,...,k}. The least value of k for which G admits a proper k-coloring
is known as the chromatic number of G and is denoted by x(G). The chromatic
index of G (denoted by x’(G)) is the least value of k such that there is a map
[+ E — [k] satisfying f(uv) # f(uw) for every uv,uw € E with v # w. It is
well-known (from the theorems of Brooks and Vizing) that x(G) < d + 1 and
d < x'(G) <d+1 for any graph G with maximum degree d.

Several variants of vertex/edge colorings have also been introduced and stud-
ied as these notions model several situations arising in practice. Some of these
variants impose further restrictions on the standard notion of colorings men-
tioned before, while others generalize this standard notion. For example, an
acyclic vertex k-coloring is a proper k-coloring in which every cycle of G is col-
ored with three or more colors. Eqivalently, the union of any two color classes

S. Ganguly and R. Krishnamurti (Eds.): CALDAM 2015, LNCS 8959, pp. 1-8, 2015.
@© Springer International Publishing Switzerland 2015



2 C.R. Subramanian

induces a forest. The acyclic chromatic number a(G) is the least k for which G
admits such a coloring. When the union is further restricted to be a star forest,
it is called a star coloring with star chromatic number being the corresponding
invariant. Acyclic and star colorings were introduced by Griinbaum [2]. Acyclic
and star colorings model certain partition problems arising in sparse matrix com-
putation [26]. Further examples of such restrictions could be proper colorings in
which the union of any two color classes induces (i) a partial 2-tree or (ii) a
planar graph, etc.

An example of a generalization is a list coloring f in which each u € V'
is provided with a list L, of colors and f satisfies f(u) € L, for each u and
f(u) # f(v) for every uv € E. Such a coloring is referred to as a proper L-
coloring where £ = {L, : u € V}. The least value of k such that G admits a
L-coloring for every L satisfying |L,| > k (for every u € V) is known as the
choice number or list chromatic number of G and is denoted by ch(G). Clearly,
X(G) < ch(G) for any G.

List colorings naturally model scheduling problems where one needs to find
a conflict-free schedule of resources to users where a resource can be assigned
only to a user who is willing to accept that resource. List colorings also naturally
arise in constructive proofs of chromatic bounds. To prove the existence of a k-
coloring, one starts with an initial partial proper coloring which colors a subset
of vertices and extends this partial coloring in an iterative fashion to a full
coloring of V. Any such extension is essentially about proving the existence of
a list coloring where any uncolored vertex is forbidden to use colors used on its
colored neighbors.

Total coloring is another generalization. A total k-coloring is a k-coloring f
of V U E with colors from [k] such that (i) f restricted to V' (or E) is a proper
vertex (or edge) coloring and (ii) f(u) # f(uv) for every uv € E. The least k
for which G admits a total k-coloring is known as the total chromatic number
of G and is denoted by x7(G). A trivial bound is x7(G) < x(G) + X'(G).

Given a coloring notion, one is interested in knowing whether the associated
chromatic number can be bounded by a function g of one or more of other
graph invariants like maximum degree A(G), maximum clique size w(G) or the
standard chromatic number x(G) ? In addition, one is interested in actually
obtaining such a function g and also in determining how tight the estimate
provided by g is 7 To establish tightness, one needs to obtain implicit or explicit
examples of graphs where any such coloring will require a number of colors which
is closer to the estimate provided by g. Probabilistic arguments is a very useful
way to obtain bounds and also to establish their tightness.

1.1 Constrained Colorings

For an illustration, consider the example of b-frugal colorings. For a given b > 1,
a proper k-coloring f of G is a b-frugal coloring if for every u € V and j € [k], at
most b neighbors of u are colored j. The least k for which such a coloring exists,
is known as the b-frugal chromatic number of G and is denoted by x{: ™(@). By
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introducing randomness, one can show that for every b > 1, we have
xi™9(G) < 164518 ... (A)

for every G of maximum degree d. Hind, et.al. [8] obtained this bound with el
in place of 16. The idea is as follows : Define k = 16d%+1/P. Choose uniformly at
random a k-coloring f : V — [k]. Define a collection of bad events as follows :

(i) For every uv € E, &,, happens if f(u) = f(v).
(ii) For every u,S C N(u) with |S| = b+ 1, £, s happens if f(v) = f(w) for
every v,w € S.

The random choice f is proper and b-frugal if none of these events (referred to
as bad events) happens. Note that the claimed bound (A) is true if it can be
shown that, (C1) : with positive probability f satisfies none of the bad events.
(C1) can be established by applying a powerful probability tool known as Local
Lemma (discovered by Erdés and Lovasz [6]) (see also [17]). This tool is very
useful in situations where we have a collection of bad events each of which is
independent of all but at most a ”"small” number of other events. The precise
meaning of "small” will vary with events and are implicitly captured by a set of
inequalities (involving probabilities of bad events and the number of influential
events) which need to be satisfied.

The choice and definition of bad events play an important role in simplifying
and shortening the proof arguments. Another important factor is in obtaining
tight bounds on the number of events influencing a given bad event. Good esti-
mates of probabilities also play an important role.

Using probabilitic arguments (particularly, Local Lemma), good upper bounds
(many of them are also tight) have been obtained on various constrained chro-
matic numbers. For a sample, we suggest the reader to [7] (acyclic chromatic
number), [14] (star chromatic numbers), [25, 10] (acyclic chromatic index), [13]
(generalized acyclic chromatic number), [11] (k-intersection chromatic index),
[5] (chromatic number bounds for graphs with sparse neighborhoods).

Recently, Aravind and Subramanian [22] have generalized the notions of
acyclic chromatic number, frugal chromatic number, etc. to a generic notion of
(7, F)-colorings and and obtained upper bounds (in terms of A) on the associated
chromatic numbers. Here, j > 2 and F is a family of connected j-colorable graphs
with each member being a graph on more than j vertices. A (j, F)-coloring of
G is a proper vertex coloring such that the union of any j color classes induces
a subgraph which is free of any copy of any member of F. The (j, F)-chromatic
number of G (denoted by x; #(G)) is the least & used on any such coloring. This
notion specializes to star colorings if we set j = 2 and F = {P,}. It specializes
to b-frugal colorings if we set j =2 and F = {K p41}-

In a related work [21], they also considered the edge analogues of (j,F)-
colorings and obtained nearly tight (within a constant multiplicative factor)
upper bounds on the associated chromatic indices. For both vertex and edge
colorings, it was also shown that several such restrictions (with each specified
by a pair (j;,F;)) can be simultaneously enforced on the colorings. As a sample
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consequence, it follows that graphs of maximum degree d can be properly edge
colored with O(d) colors so that all of the following restrictions can be simultane-
ously enforced : (i) union of any four matchings forms a partial 2—tree,2(ii) union
of any 16 matchings forms a 5-degenerate graph, (iii) union of any % (for
fixed k) matchings forms a k-colorable graph, etc. The upper bounds of [22, 21]
were based on probabilistic arguments employing Local Lemma.

In a subsequent work (23], the authors improved the bound of [22] (for the
special case of j = 2) to O (d"——l) Here, m denotes the minimum number of
edges in any member of F. This bound is also nearly tight in view of the lower
bounds in derived in [22] for the case j = 2. In this work, a connection between
(4, F)-chromatic numbers and oriented chromatic numbers was also established.
It also presented an improvement of the previously best bound of 2d?2¢ (due to
Kostochka, Sopena and Zhu [16]) to 16kd2¢ on the oriented chromatic number.
Here, d refers to the maximum degree and k denotes the degeneracy.

The oriented chromatic number x,(G) of G is the least K such that for every
orientation G of F(G), there is an oriented graph (without self-loops) H on K
vertices admitting a homomorphism f : G — H. The improvement is basically
due to a more careful analysis of the proof of the bound obtained in [16]. It works
by proving the existence of a tournament 7' on K vertices in which for every
I CV(T),|I| =i < d and for every a € {IN,OUT}!, there are at least kd + 1
vertices in V(T') \ I all having « as the set of orientations into I. The existence
was proved by choosing a random tournament on K vertices and showing that
it satisfies the required conditions with a positive probability.

1.2 Randomized Coloring Procedure

Sometimes, to obtain strong and tight chromatic bounds, proving the existence of
a coloring does not reduce to the probabilistic analysis of one random experiment.
It may call for repeated random choices and analyses to arrive at the conclusion.
In other words, it reduces to building a desired coloring in an incremental fashion
by starting with an initial partial coloring and extending it to a full coloring.
Each such extension will involve random choices and their analyses.

One paradigm that has been successfully employed in deriving several chro-
matic bounds is the following procedure (referred to as randomized coloring
procedure in [12]) :

e Each uncolored vertex u picks a color randomly from the list of colors avail-
able to it. This coloring may not be proper. In that case, uncolor any recently
colored vertex whose choice conficts with the random choice or pre-assigned
color of any neighbor.

An application of this procedure initially helps us in obtaining a proper partial
coloring that takes care of at least the colored vertices. This forces us to prune the
list of colors available to uncolored vertices. However, one needs to ensure that
each such list is of "sufficient” size to ensure that one can proceed further and
obtain a full coloring of desired type. This calls for analyzing the randomized
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coloring procedure using some of the various concentration inequalities (like
Azuma’s martingale inequality, Talagrand’s inequality) and tail bounds. Some
striking applications of this procedure (and its variants) are the list chromatic
index bounds (obtained by Kahn [3]), list chromatic bounds for triangle-free
graphs (by Kim [4]), list coloring constants (by Reed and Sudakov (24]), total
chromatic number bounds (by Hind, Molloy and Reed [9]), frugal coloring and
weighted equitable coloring bounds (by Srinivasan and Pemmaraju (12]).

1.3 List Coloring

As mentioned before, we have x(G) < ch(G) for any G. How large can ch(G)
be compared to x(G). It can be shown that ch(K, ) = ©(Inn) and hence one
cannot hope to bound ch(G) by only a function of x(G). One can easily see that
ch(G) < d(G) +1 < A(G) + 1 for any G. Here, d(G) denotes the degeneracy
of G. As the example of K, , shows, even these bounds can be quite far from
ch(G).

The following upper bound is well-known (as has been observed by several
researchers using probabilistic arguments)

(B1:) ch(G) < ex(G)(Inn)

for any G, where ¢ > 0 is a constant. An asymptotic improvement of this bound
was obtained by Noga Alon in [1] for very special classes of graphs. It was shown
that ch(K «m) < cr(lnm) for every r,m > 2. Here, K,,., denotes a complete
r-partite graph with each part being of size m. For those m satisfying m = n°(%)
where n = rm, this leads to an asymptotic improvement. This bound was also
established to be tight within a constant multiplicative factor for every r,m > 2.
The proof is based on probabilistic arguments. Consider the unique optimal
coloring (Vi,...,V;) of Kyum. If 7 < \/n, then m > r and hence (B1) can be
applied. When r > m, let L = U, L, and consider the bipartition L = L, U L»
formed by a uniformly random choice of h : L — {1,2}. Prune each L, into
L, N Ly or Ly N Ly depending on whether u € Uj<,/2V; or otherwise. It can be
shown (using Chernoff bounds on tail probabilities) that this random pruning of
lists does not reduce the list sizes by too much. Now it reduces to proving the
bound for K ..,. Continuing in this way, one reaches a stage where (B1) can be
applied. The assumption of equal part sizes played a very important role in this
proof.

Later, Subramanian [18] extended the proof arguments of [1] to work for any
G. Precisely, it was shown that

(B2:) ch(G) < ex(G) (m% + 1)

for any G. The main difficulty in extending the arguments was the potentially
highly non-uniform part sizes in any optimal coloring of G under consideration.
Hence, to obtain a proof based on inductive reduction on the value of y, a sim-
ple uniform bipartition of L will not work and one needs to choose a random



