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theses from around the world and across the physical sciences. Nominated and
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for its scientific excellence and the high impact of its contents for the pertinent field
of research. For greater accessibility to non-specialists, the published versions
include an extended introduction, as well as a foreword by the student’s supervisor
explaining the special relevance of the work for the field. As a whole, the series will
provide a valuable resource both for newcomers to the research fields described,
and for other scientists seeking detailed background information on special
questions. Finally, it provides an accredited documentation of the valuable
contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only
and must fulfill all of the following criteria

e They must be written in good English.

e The topic should fall within the confines of Chemistry, Physics, Earth Sciences,
Engineering and related interdisciplinary fields such as Materials, Nanoscience,
Chemical Engineering, Complex Systems and Biophysics.

e The work reported in the thesis must represent a significant scientific advance.
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Supervisor’s Foreword

Density-functional theory (DFT) surely ranks as one of the most extraordinary and
surprising theoretical discoveries in the physical sciences. In October 2014, just
after this thesis was submitted for examination, the journal Nature reported an
analysis of the 100 most highly-cited papers of all time [Nature 514, 550 (2014)].
Twelve of these relate to DFT, including two of the top ten. Back in 1998, Walter
Kohn received the Nobel Prize for Chemistry for his leading role in the develop-
ment of DFT. While relatively few researchers today actively work on the theory
itself, tens of thousands of us—geologists, biochemists, electronic engineers and
materials scientists as well as physicists and chemists—rely on it to perform
computational simulations of molecules, materials and biological systems.

The remarkable achievement of DFT is that it makes the impossible possible.
A key feature of quantum mechanics is that the electrons that form chemical bonds
and determine the properties of materials, devices and drugs are not independent of
each other. They must be described by a single wave function, and the computa-
tional effort required to determine this quantity grows exponentially with their
number. A direct assault on the equations of quantum mechanics is prohibitively
expensive for more than the tiniest collections of atoms. Yet DFT shows that, in
principle at least, the wave function can be bypassed in favour of the electron
density: the average number of electrons at each point in space. Through the
development of a series of well-controlled approximations and robust, user-friendly
software, the power of DFT has been fully exploited. Its dominance today relies on
the fact that it balances two requirements: first it provides a sufficiently accurate
description of the behaviour of electrons for most practical purposes, second the
computational cost is much lower than for wave-function-based methods. This is
why DFT has been so successful over the last 30 years.

However DFT as traditionally implemented is not without its shortcomings. One
of the most famous of these is that it is a ground-state theory that does not formally
treat electronic excitations, and yet many important properties of materials—such as
their interaction with light—depend upon this. Progress was made on this front
25 years ago with the extension of DFT to treat the influence of a time-dependent
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(TD) external driving force or potential, such as the oscillating electric field of light.
Developing practical approximations for TD-DFT has proven to be far more
challenging than for ground-state DFT, but software tools have been developed and
are in widespread use. Another limitation of DFT is that in spite of its highly
competitive computational cost compared with wave-function-based methods, the
scaling of the effort with the cube of the number of electrons makes it extremely
expensive to treat more than a few hundreds of atoms—still small compared with
relevant length-scales in materials and biological systems.

The thesis work by Tim Zuehlsdorff described in this volume aims to address
both of these drawbacks by developing and applying a method to perform TD-DFT
simulations with a computational cost that scales only linearly with the number of
electrons. This work has been carried out within the framework of the ONETEP
code, which optimises a set of local orbitals to describe the chemical environment
of each atom using a basis set equivalent to plane-waves, which are a popular
choice for DFT. In a previous volume (DOI:10.1007/978-3-319-00339-9), Laura
Ratcliff described how this process can be extended to optimise a second set of local
orbitals to describe the unoccupied or virtual electronic states—a vital prerequisite
for any treatment of electronic excitations. In the work reported here, Tim has built
on that foundation to implement a linear response approach to TD-DFT with a
linear-scaling framework and to demonstrate its application to two systems of
potential technological interest: doped organic molecular crystals for a room tem-
perature MASER and the Fenna-Matthews-Olson pigment-protein complex.
Moreover, Tim describes how the local orbital framework provides an opportunity
to manipulate the description of the electronic excitations in such a way as to
remedy some of the side effects of the simplest approximations commonly used in
TD-DFT. It is work like this—on the development of both approximations and
software—that is needed to ensure that DFT continues to serve a wide range of
scientists and engineers for the next 30 years.

London Prof. Peter D. Haynes
March 2015



Abstract

In recent years, time-dependent density-functional theory (TDDFT) has been the
method of choice for calculating optical excitations in medium sized to large sys-
tems, due to its good balance between computational cost and achievable accuracy.
In this thesis, TDDFT is reformulated to fit the framework of the linear-scaling
density-functional theory (DFT) code ONETEP. The implementation relies on rep-
resenting the optical response of the system using two sets of localised, atom
centred, in situ optimised orbitals in order to ideally describe both the electron and
the hole wavefunctions of the excitation. This dual representation approach requires
only a minimal number of localised functions, leading to a very efficient algorithm.
It is demonstrated that the method has the capability of computing low energy
excitations of systems containing thousands of atoms in a computational effort that
scales linearly with system size.

The localised representation of the response to a perturbation allows for the
selective convergence of excitations localised in certain regions of a larger system.
The excitations of the whole system can then be obtained by treating the coupling
between different subsystems perturbatively. It is shown that in the limit of weakly
coupled excitons, the results obtained with the coupled subsystem approach agree
with a full treatment of the entire system, with a large reduction in computational
cost.

The strengths of the methodology developed in this work are demonstrated on a
number of realistic test systems, such as doped p-terphenyl molecular crystals and
the exciton coupling in the Fenna-Matthews-Olson complex of bacteriochlorophyll.
It is shown that the coupled subsystem TDDFT approach allows for the treatment of
system sizes inaccessible by previous methods.

vii
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Chapter 1
Introduction and Theoretical Prerequisites

The underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole of chemistry are
thus completely known, and the difficulty is only that the exact
application of these laws leads to equations much too
complicated to be soluble. It therefore becomes desirable that
approximate practical methods of applying quantum mechanics
should be developed, which can lead to an explanation of the
main features of complex atomic systems without too much
computation.

Paul Dirac [1]

1.1 Introduction

1.1.1 Practical Methods

When the theory of quantum mechanics was developed in the early 20th century, it
caused the most groundbreaking revolution in scientific thinking since the publica-
tion of Newton’s Principia over 200 years prior. It was quickly recognised that the
theory did in principle allow for the calculation of all properties of matter from the
atomic scale all the way up to the macroscopic scale. Or, in Dirac’s perhaps slightly
optimistic words, quantum mechanics provided a mathematical theory for “a large
part of physics and the whole of chemistry”. However, it soon became equally appar-
ent that the equations describing the fundamental behaviour of matter were far too
complicated to be soluble for more than a handful of the most trivial cases.

For this reason, ever since the development of the basic theory of quantum mechan-
ics, a significant research effort has been directed into developing “practical meth-
ods™ that would allow for calculating approximate solutions to complex systems. The
earliest approximations, like the WKBJ method (named after Wentzel, Kramers, Bril-
louin and Jeffreys, who each independently developed it) [2-5], focused on finding
so-called “semiclassical solutions” to the Schrodinger equation, the main equation
governing quantum mechanics. It has been used extensively in finding the behaviour

© Springer International Publishing Switzerland 2015 |
T.J. Zuehlsdorff, Computing the Optical Properties of Large Systems,
Springer Theses, DOI 10.1007/978-3-319-19770-8_1



2 I Introduction and Theoretical Prerequisites

of quantum particles in simplified models of tunneling processes, most notably to
derive the rate of nuclear fusion [6].

The introduction of computers helped along a further development in quantum
mechanics, namely the move away from studying simplified model systems towards
finding approximate numerical solutions to real systems like molecules and solids.
To unlock the predictive power of quantum mechanics, it becomes necessary to
make use of methods that are truly ab initio, in that they do not make use of any
a priori assumptions about behaviour of the system that is studied. However, the
complexity of the quantum mechanical equations that Dirac already recognised in
1926 means that a direct numerical solution requires a computational effort that
grows exponentially with the size of the system that is to be solved, rendering any
such direct approach impractical for anything but the most simple problems. Thus in
practice, further well-controlled approximations have to be made in order to reduce
the scaling from an exponential to a polynomial one.

The most successful in this new generation of “practical methods™ are based on
density-functional theory (DFT) [7], which after making a number of simplifying
approximations to the quantum mechanical effects of exchange and correlation of
electrons, yields any ground state property of a system with a computational scaling
that is just the cube of the system size. Since its development in 1964 it has shown real
predictive power in the study of molecules and solids and has become the standard
tool in areas as diverse as chemistry, biophysics and materials science. The great
impact of DFT on a wide range of scientific disciplines was recognized in 1998 by
awarding the Nobel Prize of Chemistry to Walter Kohn and John Pople.

1.1.2 Spanning Lengths

While the standard formulation of DFT has been remarkably successful in the last few
decades, measured in both the annual citations of the papers describing the original
method and the number of different scientific areas it is now routinely used in, most
of its applications are focused on two limiting cases. On one end of the scale are
small, isolated molecules, while the other end of the scale contains applications to
infinite crystals. The reason why most applications are limited to these two regimes
can be seen in the O(N?) scaling with system size that is inherent in the method,
meaning that a doubling of system size leads to an 8-fold increase in computational
effort. Both the case of a small, isolated molecule and an infinite (defect-free) crystal
can be computed by considering only a few atoms' and are easily treated by standard
DFT with moderate computational effort.

'In the case of infinite systems, this is achieved by making use of periodic boundary conditions,
such that only a unit cell of the crystal has to be treated explicitly and the translational crystal
symmetry is exploited.
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In recent years there has been an increased interest in systems that lie between
these two limiting cases and that are prohibitively large for the O(N 3) scaling of
DFT. Examples of these systems include large biomolecules, nanocrystals and infinite
crystals containing defects. The feature all of these systems have in common is that an
appropriate treatment of them requires calculations containing thousands of atoms,
rendering them impractical using conventional DFT even on modern supercomputers.

Overthe last 20 years, linear-scaling DFT methods have been designed specifically
to address the class of systems mentioned above and are now routinely used to treat
systems containing thousands of atoms. This new generation of methods has been
used with great success to treat problems that were completely inaccessible even a
few years ago.

1.1.3 Light Interactions

While the development of linear-scaling techniques has opened up a wide field of
new applications for DFT (see, for example [8-11]), it also comes with a new set
of challenges. Since calculations of ground state properties of systems containing
thousands of atoms are now possible, the problem shifts to extracting information
from these calculations that can be compared directly to experimental measurements.

Consider for example a crystal with two interacting defects in it. In order to find
the lowest energy arrangement of the defects in the entire structure using linear-
scaling DFT one has to generate all unique configurations of the two defects in
the lattice and perform a full DFT calculation on every one of these structures to
compare the total energies. While each of the individual DFT calculations does
scale linearly with the number of lattice sites within a finite supercell, the number
of nonequivalent defect configurations grows as O(N) with lattice sites, leading to
an overall scaling of @(N?). Thus in this example the scaling problem does not
originate from the DFT calculation itself but from the configurational complexity
that increases once the system size is increased. To make matters worse, the above
example of two interacting defects is likely to produce a large array of potential
structures, all separated by very small energy differences, any of which are likely
to occur in the real material whose properties need to be predicted. Due to this
configurational complexity in large systems, it is often found that predicting ground
state properties of the single lowest energy configuration is of little use in making
predictions of the behaviour of the entire system.

A way of sidestepping the configurational complexity problem leading to
unfavourable scaling when linear-scaling DFT is applied to a large system is to
attempt to predict properties that are measured directly in experiments. One of the
properties of interest for many practical applications is the interaction of the sys-
tem with light, which can be obtained from the time-dependent extension of the
DFT method (TDDFT). Accurate predictions of absorption spectra of semiconduc-
tor nanocrystals are a key ingredient to developing new generations of efficient solar
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cells, while predictions of spectra of large photoactive biomolecules is of great inter-
est in the area of biophysics.

Optical absorption spectra of nanostructures and large photoactive biomolecules
that are measured in experiments are taken on timescales that are several orders
of magnitude larger than the timescales of atomic vibrations around their point of
equilibrium. Thus the optical spectra produced in experiments can be seen as the result
of an averaging over many low energy configurational structures of the system of
interest and are often well reproduced by theoretical calculations on a single, average
low energy structure of that system.” Thus in order to make meaningful predictions on
the measurable quantity of light absorption, the configurational complexity problem
that troubles many potential applications of linear scaling techniques can be, to a
large extent, ignored, making theoretical spectroscopy an ideal area of impact for
linear-scaling methods.

The purpose of this dissertation is to extend the linear-scaling techniques that
proved so successful in standard DFT over recent years to the calculation of optical
spectra using TDDFT. The aim is to develop methods capable of calculating the low
energy optical spectrum of systems containing thousands of atoms in an effort scaling
linearly with system size. This will open up new potential areas of research in the
field of theoretical spectroscopy and connect directly to experimental measurements
to enable a more effective collaboration between the experimental and the theoretical
community.

1.2 Theoretical Prerequisites

In this section, some of the prerequisite background knowledge that is needed for the
later chapters is discussed. The main focus lies on giving a very brief overview over
some important aspects of quantum mechanics and introducing the most important
choices of notation that are used throughout the rest of the work.

1.2.1 The Wavefunction

The wavefunction W completely describes the quantum state of a system of N parti-
cles and contains all information about the system. While the wavefunction does not
have a unique representation for an arbitrary quantum system, a typical representa-

21t should be noted that such an average, low energy structure cannot always be readily found in
large biological systems where atomic positions are derived from X-ray diffraction experiments.
Furthermore, while atoms in nanostructured crystals often undergo simple oscillations around a
point of equilibrium, this is not necessarily the case in biological pigment-protein complexes,
where the motion of the protein happening on a much longer timescale can become important. In
these systems, it is often necessary to calculate spectra of several snapshots taken from a molecular
dynamics simulation in order to achieve a good representation of the relevant phase space.



