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Preface

The first edition of the Foundation Engineering Handbook was well received by users. One
major reason for this is its fulfillment of the need for both classical foundation design
principles and the latest contributions made to the state of knowledge. Some of the unique
areas covered in the first edition were innovative in situ testing and site improvement
techniques, concepts of ground deformation modeling using the finite element method,
reliability-based design concepts, and pile construction monitoring techniques that are
in wide use today. In this new edition, the handbook includes additional applications in
the state of the art such as unsaturated soil mechanics, analysis of transient flow through
soils, deep foundation construction monitoring based on thermal integrity profiling, and
updated ground remediation techniques. Furthermore, in the new edition, almost every
chapter has been updated by adding alternative analytical techniques such as the force
polygon method of analysis and a number of additional illustrative examples to comple-
ment the existing ones. Therefore, the applicability of this handbook as a supplementary
textbook, at both undergraduate and graduate levels, has been vastly elevated.

It is indeed my pleasure to have worked with a distinguished set of contributors who
once again performed their tasks in an outstanding manner amid their professional
demands. Especially, my thanks are conveyed to Dr. Gray Mullins and James Hussin. My
appreciation is conveyed to University of South Florida civil engineering graduate students
Mohammed Naim, Alex Mraz, Ivan Sokolic, Mathiyaparanam and Kalyani Jeyisankar,
Duminda Randeniya, John Metz, Justin Callahan, and Yordanka Goodwin for their con-
tributions and to Ingrid Hall for help in preparing the manuscript. The support of my
children, Ruwan and Aruni, and my wife, Prabha, during the arduous task of making this
project a reality is also gratefully acknowledged. I wish to extend my special thanks to Joe
Clements and Josie Banks-Kyle and other members of the staff at Taylor & Francis Group
for their support in publishing the second edition of this handbook. Thanks are also due
to the publishers who permitted the use of material from other references.

I acknowledge the mentorship of late Professor Alagiah Thurairajah, former dean of the
Faculty of Engineering, University of Peradeniya, Sri Lanka, and a prominent member
of the Cambridge University’s Cam Clay group. Finally, I dedicate this second version of
the handbook as well to my mother, Jeanette Gunaratne, and my late father, Raymond
Gunaratne.
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1.1 Introduction

Geotechnical engineering is a branch of civil engineering in which technology is applied
to the design and construction of structures involving geological materials. Earth’s surface
material consists of soil and rock. Of the several branches of geotechnical engineering,
soil and rock mechanics are the fundamental studies of the properties and mechanics
of soil and rock, respectively. Foundation engineering is the application of the principles
of soil mechanics, rock mechanics, and structural engineering to the design of structures
associated with earthen materials. On the other hand, rock engineering is the correspond-
ing application of the above technologies to the design of structures associated with rock.
It is generally observed that most foundation types supported by intact bedrock present
no compressibility problems. Therefore, when designing common foundation types, the
foundation engineer’s primary concerns are the strength and compressibility of the sub-
surface soil and whenever applicable, the strength of bedrock.

1.1.1 Origin of Geomaterials

The earth’s interior consists of a core, mantle, and outer crust. The core is made up of a
solid inner part and a liquid outer part existing at extremely high temperatures and pres-
sures. The mantle consists of harder material under relatively cooler temperatures.

The outer zone of the mantle and the inner zone of the outer crust are made up of a
dense, semisolid or plastic rock layer known as the asthenosphere. The outer crust or the
lithosphere (rock sphere) contains hard brittle rock topped at most locations by the soil
overburden or oceans and soil overburden.

The lithosphere is not formed as one continuing crust but rather constitutes a number
of tectonic plates that constantly move somewhat independently of each other. Plate diver-
gence at the boundaries produces rifts that allow molten material from the asthenosphere
to rise, cool, and create new lithosphere. These locations generally coincide with areas of
volcanic activity. On the other hand, plate convergence at the boundaries causes constant
stress buildup, creating conditions for possible earthquakes.

A foundation engineer needs to be informed of two aspects of the above discussion. The
primary information relates to the formation of the soil overburden. Gradual weathering of
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the rock material in the lithosphere due to physical means (i, pressure and temperature
related), chemical means, or man’s action can create distinct stages of decomposition. Ideally,
successive in situ staged decomposition of rock would result in boulders, gravel, sand silt, and
clay. The most important information that a foundation engineer must have regarding the site
selected for a given building is the classification of soil type (Section 1.2) and the condition of
bedrock (decomposed or solid). The secondary information pertains to the seismicity of the
general geographical area. If the area is known to be seismically active, then principles of soil
dynamics must also be incorporated in foundation design (Sections 3.6 and 3.7).

I
1.2 Soil Classification

1.2.1 Mechanical Analysis

According to texture or the “feel,” two different soil types can be identified. They are
(1) coarse-grained soil (gravel and sand) and (2) fine-grained soil (silt and clay). Whereas
the engineering properties (primarily strength and compressibility) of coarse-grained
soils depend on the size of individual soil particles, the properties of fine-grained soils
are mostly governed by the moisture content. Hence, it is important to identify the type of
soil at a given construction site because the most effective construction procedures depend
on the soil type. Geotechnical engineers use a universal format called the Unified Soil
Classification System (USCS) to identify and label soil. This system is based on the results
of common laboratory tests of mechanical analysis and Atterberg limits.

In classifying a soil sample retrieved from a given site, mechanical analysis is conducted
in two stages: (1) sieve analysis for the coarse fraction (gravel and sand) and (2) hydrometer
analysis for the fine fraction (silt and clay). Of these, sieve analysis is conducted according
to ASTM (American Society for Testing and Materials) D421 and D422 procedures, using
a set of U.S. standard sieves (Figure 1.1); the most commonly used sieves are U.S. Standard
numbers 20, 40, 60, 80, 100, 140, and 200, which correspond to sieve openings of 0.85, 0.425,
0.25,0.18,0.15, 0.106, and 0.075 mm, respectively. During the test, the percentage (by weight)
of the soil sample retained on each sieve is recorded, from which the percentage (R%) pass-
ing (or finer than) a given sieve size (D) is determined.

On the other hand, if a substantial portion of the soil sample consists of fine-grained soils
(D_< 0.075 mm), then sieve analysis has to be followed by hydrometer analysis (Figure 1.2).
The latter test is performed by first treating the “fine fraction” with a deflocculating agent
such as sodium hexa-meta-phosphate (Calgon) or sodium silicate (water glass) for about
half a day and then allowing the suspension to settle in a hydrometer jar maintained at a
constant temperature. As the heavier particles settle, followed by the lighter ones, a cali-
brated ASTM 152H hydrometer is used to estimate the fraction (percentage, R%) by weight
still settling above the hydrometer bottom at any given stage. Furthermore, the particle
size (D) that has settled past the hydrometer bottom at that stage in time can be estimated
from the well-known Stokes’ law for settling of objects in a liquid. It is realized that R% is
the weight percentage of soil finer than D.

Further details of the above tests such as the correction to be applied to the hydrom-
eter reading and determination of the effective length of the hydrometer are provided by
Bowles (1986) and Das (2002). For soil samples that have significant coarse and fine frac-
tions, both sieve and hydrometer analysis results (R% and D) can be logically combined to
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FIGURE 1.1
Equipment used for sieve analysis. (Courtesy of the University of South Florida.)

FIGURE 1.2
Equipment used for hydrometer analysis. (Courtesy of the University of South Florida.)

generate grain (particle) size distribution (PSD) curves such as those indicated in Figure 1.3. As
an example, in Figure 1.3, it can be seen that 30% of soil type A is finer than 0.075 mm (U.S.
No. 200 sieve), with R% = 30 and D = 0.075 mm being the last pair of results obtained from
sieve analysis. In combining sieve analysis data with hydrometer analysis data, one has to
convert the R% (based on the fine fraction only) and D (size) obtained from hydrometer
analysis to percent passing based on the weight of the entire sample, in order to ensure the
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FIGURE 1.3
Grain (particle) size distribution curves. (From Edward Nawy (ed.), Concrete Design Handbook, Taylor & Francis,

Boca Raton, FL, 1997,)

continuity of the PSD curve. As an example, let the results from one hydrometer reading
of soil sample A be R% =90 and D = 0.05 mm. To plot the curve, one needs the percent-
age of the entire sample finer than 0.05 mm. Since what is finer than 0.05 mm is 90% of
the fine fraction (30% of the entire sample) used for hydrometer analysis, the converted
percent passing for the final plot can be obtained by multiplying 90% by the fine fraction
of 30%. Hence, the converted data used to plot Figure 1.3 are percent passing = 27 and D =
0.05 mm.

1.2.2 Atterberg Limits

As mentioned previously, the properties of fine-grained soils are governed by water. Hence,
the effect of water must be the primary consideration in classification of fine-grained soils.
This is achieved by using the Atterberg limits or consistency limits. The physical state of
a fine-grained soil changes from brittle to liquid state with increasing water content, as
shown in Figure 1.4.

Theoretically, the plastic limit (PL) of a soil is defined as the water content at which the
soil changes from “semisolid” to “plastic” (Figure 1.4). For a given soil sample, this is an
inherent property of the soil, which can be determined by rolling a plastic soil sample into

Shrinkage Plastic Liquid

limit limit limit
L 1| } } . Water
Brittle  Semisolid Plastic Liquid i
solid

FIGURE 1.4
Variation of the fine-grained soil properties with the water content.
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FIGURE 1.5
Equipment for the plastic limit-liquid limit tests. (Courtesy of the University of South Florida.)

a worm shape in order to gradually reduce its water content by exposing more and more
of an area until the soil becomes semisolid in consistency. This change can be detected by
cracks appearing on the sample. According to ASTM 4318, the PL is the water content at
which cracks develop on a rolled soil sample at a diameter of 3 mm. Thus, the procedure
to determine the PL is one of trial and error. While the apparatus (ground glass plate and
moisture cans) used for the test is shown in Figure 1.5, the reader is referred to Bowles
(1986) and Das (2002) for more details.

On the other hand, the liquid limit (LL), which is visualized as the water content at
which the state of a soil changes from “plastic” to “liquid” with increasing water content,
is determined in the laboratory using the Casagrande liquid limit device (Figure 1.5). This
device is specially designed with a standard brass cup on which a standard-sized soil
paste is applied during testing. In addition, the soil paste is grooved in the middle by a
standard grooving tool thereby creating a “gap” with standard dimensions. When the
brass cup is made to drop through a distance of 1 cm on a hard rubber base, the number
of drops (blows) required for the parted soil paste to come back into contact through a dis-
tance of 1/2 in is counted. Details of the test procedure can be found in the work of Bowles
(1986) and Das (2002). ASTM 4318 specifies LL as the water content at which the standard-
sized gap is closed in 25 drops of the cup. Therefore, one has to repeat the experiment for
different trial water contents, each time recording the number of blows required to fulfill
the closing condition of the soil gap. Finally, the water content corresponding to 25 blows
(or the LL) can be interpolated from the data obtained from all trials. The plasticity index
(PI), which is a widely used parameter for the classification of fine-grained soils, is evalu-

ated as follows:

PI=LL-PL 1.1

1.2.3 Unified Soil Classification System

In the commonly adopted USCS shown in Table 1.1, the aforementioned soil properties are
used effectively to classify soils. Example 1.1 illustrates the classification of the two soil
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samples A and B represented by the PSD curves shown in Figure 1.3. Definition of the fol-
lowing two curve parameters is necessary to accomplish the classification:

Coefficient of uniformity (C,) = Dy /D;q
Coefficient of curvature (C,) = Dy, /Dy, Dy

where D; is the diameter corresponding to the ith percent passing on the PSD.

Example 1.1
Classify soils A and B with PSD curves shown in Figure 1.3.

Solution

Soil A. The percentage of coarse-grained soil is approximately equal to 70% (=100% — 29%).
It must be noted that 29% is the percent passing corresponding to 0.075 mm size designated
as the U.S. No. 200 sieve size and the lower threshold size of coarse-grained soils. Therefore,
A is a coarse-grained soil. The percentage of sand in the coarse-fraction is equal to (70 -
29)/70 x 100 = 57%. It must be noted that 70% is the percent passing corresponding to 4.75
mm size designated as the U.S. No. 4 sieve size and the upper threshold size of sands. Thus,
according to the USCS (Table 1.1), Soil A is sand. If one assumes a clean sand, then

C.=(0.075)%/(2 x 0.013) = 0.21, does not meet the criterion for SW
C, = (2)/(0.013) = 153.85, meets criterion for SW

Hence, soil A can be classified as a poorly graded sand designated as SP.

Soil B. The percentage of coarse-grained soil is equal to 32% (=100% — 68%). Hence, B is
a fine-grained soil. Assuming that LL and PL are equal to 45 and 35, respectively (which
results in a PI value of 10 from Equation 1.1), using Casagrande’s plasticity chart (Table 1.1)
soil B can be classified as silty sand with clay (ML).

1.3 Water in Soils
1.3.1 Clay Minerals

Mechanical weathering described in Section 1.1.1 tends to produce coarse-grained soils such
as boulders, cobbles, gravels, and sands, whereas chemical weathering produces clay miner-
als. The engineering behavior, which is primarily described by the strength and compressibil-
ity characteristics, of coarse-grained soils is mainly dependent on the grain-size distribution
and the degree of packing. On the other hand, in clay minerals that are electrochemically
active, the water content has a significant bearing on the engineering behavior.

Clay minerals are hydrous aluminum silicates that contain metallic ions such as Si%,
Al*, Mg?, or Fe?*. X-ray diffraction studies (Holtz and Kovacs, 1981) have revealed that the
crystals of the above minerals consist of many crystal sheets having a repeating atomic
structure. The two fundamental crystal sheets are tetrahedral silica and octahedral alu-
mina. As shown in Figure 1.6a, the silica tetrahedral unit consists of four oxygen atoms
at the corners surrounding a silicon atom. Similarly, in the octahedral alumina unit, six
oxygen atoms or hydroxyls (OH) surround a metallic atom such as Al or Mg (Figure 1.6b).
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FIGURE 1.6
(a) Tetrahedral silica. (b) Octahedral alumina. (c) Basic kaolinite crystal structure. (d) Basic montmorillonite

crystal structure. (e) Basic illite crystal structure.

Anexample of a 1:1 clay mineral is kaolinite with the basic crystal structure shown in Figure
1.6c. The tetrahedral and octahedral units share common oxygen atoms, whereas hydro-
gen bonding holds the successive layers together. The absence of interchangeable cations in
between the basic layers limits the influence of water on the engineering behavior of kaolinite.

Montmorillonite (Figure 1.6d) and illite (Figure 1.6e) are common examples of 2:1 clay
minerals. In the montmorillonite crystal structure, the bonding between the silica sheets
is relatively weak compared to the bonding between slica and alumina in kaolinite. Hence,
polarized water molecules and exchangeable cations can easily enter the space between the
two layers in large quantities and separate them, thus imposing a significant effect on the
behavior of such clays. Consequently, subsurface soils with a significant content of montmo-
rillonite clay mineral can induce damaging swelling pressures on superstructures and roads.
The activity of montmorillonite clay minerals can be reduced by lime stabilization whereby
the addition of Ca? into the interlayer space can reduce the water affinity of those minerals.

In illite (Figure 1.6e), on the other hand, the individual layers are tightly bonded with
potassium ions K¢, thus disabling any water molecules intruding into the interlayer space.
Hence, illite clay minerals do not exhibit swelling activity.

1.3.2 Effective Stress Concept

Voids (or pores) within the soil skeleton contain fluids such as air, water, or other contami-
nants. Hence, any load applied on a soil is partly carried by such pore fluids in addition to



