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Preface

This textbook introduces into the theory of non-linear Finite Element Methods (FEM)
in structural mechanics, divided into the main parts on geometric non-linearity,
non-linear material behaviour and contact. While it is not possible to describe the
total FEM of linear mechanics in one book, this is even more the case for the
non-linear FEM, as “‘non-linear” is not a special property but means that the limiting
assumptions, which for good reason dominate undergraduate studies in Technical
Mechanics, are missing. This book should prepare the reader to work with advanced
books and papers.

The formulae used are intentionally derived in detail in order to enable the reader
to transfer the described relations into computer programs and to create equations
for similar physical effects.

The book addresses first and foremost students who want to attain Master’s level,
but FEM users should get useful insights as well. In the linear FEM, provided the
systems are sufficiently constrained, a result is always obtained (the correctness/
accuracy is not to be discussed here); however, the user, especially the novice one, of
non-linear analysis will end up in non-convergence and thus without equilibrium in a
number of attempts. In this situation, it is good to know the potential causes. This will
help to decide whether and how convergence can be achieved by changes to the
settings. Here, the chapters on stability and on convergence in contact analysis are
recommended. It should be noted that the success of a non-linear analysis depends on
realistic input data, as a failure of the system will not only appear in the final results
(when comparing them with strengths) but will influence convergence at an earlier
stage.

For the user there is a further necessity—maybe even more important—of the
theoretical background: the FEM programs on the market offer numerous options and
settings to choose which usually are described for a user with knowledge on how
Finite Elements are formulated. In this book, it is assumed that the reader knows how
this is done for linear FEM. For that subject, there are numerous books and often
lectures in engineering courses.



vi Preface

The sample results in this book, if not from table calculation, are mostly obtained
with ANSYS. but other well-known FE codes use similar concepts such that the
findings can be transferred.

This textbook describes the knowledge the author obtained over many years, the
majority of them as a practical engineer. Most of it is common among experts.
Therefore, the book does not list the origin of all these theories and algorithms but
only gives advanced references. Since the book is derived from scripts of lectures,
general solution methods are worked out in full when the related problem occurs for
the first time.

This work is based on scripts of lectures being given by the author in the frame of
Master’s courses at Universities of Applied Sciences of Hanover (where the author
is affiliated) and Lausitz as well as at the European School of Computer Aided
Engineering Technology (ESoCAET). The roots, however, are teaching and devel-
opment duties of the author during his long-lasting employment at CADFEM
GmbH. The author would particularly like to thank its founder, Dr.-Ing. Giinter
Miiller, for the opportunity to learn during everyday work as well as for his
uncomplicated handling of possible copyright questions.

The author first earned his stripes in the field of Finite Elements—which already
included a certain amount of non-linearity—at “Institut fiir Baumechanik und
Numerische Mechanik™ (Institute for Structural and Numerical Mechanics) of Uni-
versity of Hanover under the guidance of Prof. Dr.-Ing. Erwin Stein, who awakened
the author’s enthusiasm first for mechanics, then for Finite Elements and to whom the
author gives his heartfelt thanks.

A German-language version of this book was first published in 2009.

Langenhagen, Germany Wilhelm Rust
Spring 2014



Notation

Symbols of formulae are explained at least at their first appearance in the text.

M
v

FE
FEM
CoS
eq.
5.0.eqs.
deq.
r.h.s.
w.r.L.
resp.

Id. 2d. 3d

Matrices are written in boldface and with capital letters
Vectors, row and column matrices in boldface and lower case letters,
excepl a certain quantity is commonly noted in a different way
Means a zero vector or a zero matrix

A unit matrix (identity)

Denotes an increment

a tilde over a variable—an approximation

a bar—a given value

a hat (circumflex)—a value associated to a Finite Element node
a star—a modified, improved value or one being used instead of
the original one

Finite Elements

Finite-Element Method

Coordinate system

Equation

System of equations

Differential equation

Right hand side

With respect to

Respectively

One-, two-, three-dimensional resp. the one-, two-,
three-dimensional space

Points to the reference list
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Chapter 1
Basic Mathematical Methods

This chapter occurs here because it is of relevance for all following sections. It is
possible to skip it until the first applications are formulated.

1.1 Index Notation

As long as it is possible the matrix notation with the matrix product as the kernel is
used in the governing formulae. If this is not sufficient to explain how the multi-
plication must be carried out the index notation is applied including the sum

convention:
If an index appears in two factors of a product a sum must be formed, i.e. the

summation symbol is left out. The sum is formed over the necessary length »,
e.g. over the number of coordinate directions, over the number of nodes or the
number of degrees of freedom:

n
Ci = AjjBj := EA,;,-B,-A. means in matrix notation C = AB (1.1)
=1

Instead of transposition the other index is used for summation:
Ci = A;iBj means in matrix notation C = A’B (1.2)

Furthermore Kronecker’s delta is used with

5 = {1 for i=j (13)

0 otherwise
and the following rule

© Springer International Publishing Switzerland 2015 I
W. Rust, Non-Linear Finite Element Analysis in Structural Mechanics,
DOI 10.1007/978-3-319-13380-5_1
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3%

(I/\,'ﬁ,‘j = ay; (] 4)

There is a sum over i but there is only a contribution if i =.

In index notation only scalars are to be multiplied. Therefore the order of the
factors can be changed. The summation—determining the order in matrix nota-
tion—is described by the indices which must not be changed.

1.2 Derivatives with respect to a Vector
Let v be a vector with the components v;:

v= " (1.5)

If the derivative of a scalar ¢ with respect to v is requested this means that
derivatives w.r.t. each component must be formed and ordered in a row:

(1.6)

% da 0Oa Oa
=

~|ov v o

This order is necessary because the linearised variation of « is obtained by multi-
plying by the variation of v:

0 0 0
Sa = l:_a(;‘,l 4 a 5v2 _‘_8_05‘.3_}_...]
vy

a\‘p a\‘g
(5\’|
[ 0a 0a Oa v |  Oa
_[a_” e J | =5 (1.7)

The derivative of a (column) vector a w.r.t. v concerns all components of a such that
a matrix is created:



1.2 Derivatives with respect to a Vector

a(l| atI| aL'l|

a\‘ 8\'3 a\’3
G = aa; da, Oay (1.8)
ov

v o

The following might not be commonly defined but is necessary at some sections

of this book:
If such a matrix is transposed this is noted for the two vectors:

da; Oa> %
[53]7'_ v, 0v; Ov da’”

a(l| aa?_ 6(13 o = W (]9)

vy 0Ovy 0Ovy

ov

The second derivative of a scalar ¢ w.r.t. v then becomes:
2 2 2
0°a 0-a 07a

ala 0 Oa 0 l:aa]r a\'|’a\’| awal’j 5\’.5\’3

Bviav v av Bvldw| — | 9@ 0%a P« | (110)

O0v20v;  Ova0vy  Ova0vs

This is always a symmetric matrix.

What is the derivative of a matrix A w.r.t. v? This would be a hypermatrix, a
three-dimensional matrix, which cannot be shown on a piece of paper (except
writing one “‘plane” after the other). Let us look at index notation:

A 7
— [.11
. means - ( )

(three indices). However, our final results are at most two-dimensional matrices.
The derivatives (1.11) only occur if A is multiplied by a vector w before the
derivative is carried out:

0A 0Aj;
5, W Mmeans -5‘—;’ w; (1.12)

Then it is useful to calculated Aw first, getting a vector, and then to form the
derivative, getting a (two-dimensional) matrix again. This is explained in detail by
means of an example in Sect. 2.4.
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1.3 Newton-Raphson Method

In the linear FEM a linear system of equations must be solved, e.g. by methods
based on the Gaussian algorithm. A direct solution of a larger system of non-linear
equations is usually impossible. Therefore in most cases the Newton- or Newton-
Raphson scheme' is applied. It is well-known for one-dimensional non-linear
equations.

The Newton-Raphson scheme is known for the determination of the roots of a
function f(x) = 0. In case of a single variable the iteration formula reads:

M= ) (1.13)
Simply written in a different notation:
ZOTR
o=+ (40] ) ) (1.14)

There i+ 1 means the iteration step, thus the index 0 the initial value. For the n-
dimensional problem d(u) = 0 (symbols from the disequilibrium forces d depending
on displacements u, see Sect. 2.3) this must be written as follows:

dd(u)

W =u+ 3u

=
(—d(w)) = u; + Kz ' (=d(u;)) (1.15)

u=u,

Ky

K is called rangential matrix, in conjunction with mechanical analyses tangential
stiffness matrix as well. In mathematics it is also called Jacobian if it simply is the
derivative of a vector d with respect to a vector u or Hesseian if the d is considered
to be the derivative of a potential /7 with respect to u, thus K; being the second
derivative of /1.

In general it is unusual to form the inverse. A linear system of equations is solved
instead. This leads to the following algorithm:

] o - ¥ g

Joseph Raphson was a contemporary of Isaac Newton and contributed significantly to the
development of the method that is commonly known as Newton scheme. It is said that Thomas
Simpson created the well known notation from above.



