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Preface

The science of solving elliptic problems has been revolutionized in the
last 35 years. Today’s large-scale, high-speed computers can solve most
two-dimensional boundary value problems at moderate cost accurately, by
a variety of numerical methods. The aim of this monograph is to provide
a reasonably well-rounded and up-to-date survey of these methods.

Like its predecessor (Birkhoff [69]),-written at an earlier stage in the
Computer Revolution, our book emphasizes problems which have impor-
tant scientific and/or engineering applications, and which are solvable at
moderate cost on current computing machines. Because of this emphasis,
it devotes much space to the two-dimensional ‘linear source problem’

—V-[p(x,y)Vu]+q(x,y)u=ﬂx,y), op 50,8020,

We make no claim_to completeness. Indeed, our main concern is with
linear boundary value problems, and we say little about eigenproblems.
Readers seeking additional information should consult the carefully
selected references cited in our many footnotes.

Chapters 1 and 2 are preliminary in nature, and are included to make
our book largely self-contained. The first chapter explains the physical
origins of several typical, relatively simple elliptic problems, indicating
their practical importance. The second chapter reviews some of the most
helpful and easily appreciated relevant theorems of classical analysis. It is
the properties stated in these theorems (e.g., the smoothness of solu-
tions), that give to elliptic problems their special mathematical flavor.
Classical analysis also provides known exact solutions to many ‘model
problems’, which can be used to test the accuracy of numerical methods.

Our analysis of numerical methods begins in Chapter 3. Some of the
best known and most successful- difference approximations to elliptic
problems are reviewed, with emphasis on their simplicity and accuracy.
Examples are given to show how their accuracy depends on the problem
being solved, as well as on roundoff, Richardson extrapolation, eic.

We then devote two chapters to effective algorithms for solving numeri-
cally the very large systems of' linear algebraic equations (involving

X
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200—5000 or more unknowns) to which such difference approximations
give rise. After briefly sketching several direct ‘sparse matrix’ methods in
the first part of Chapter 4, we concentrate on iterative and semi-iterative
methods. The latter are not omly advantageous for treating very large
problems and essential for solving nonlinear problems, but they seem
destined- to play a crucial role in solving the three-dimensional elliptic
problems whose solution will, we hope, become routine during the next
decade.

Chapters 6 and 7 return to approximation methods, especially the finite
element methods (FEM) that have been adopted so widely during the past
two decades. In analyzing these FEM, we emphasize techniques for piece-
wise polynomial approximations having higher-order accuracy, and simple
estimates of their errors. Though our discussion is much less general than
that in Philippe Ciarlet’s admirable book The Finite Element Method for
Elliptic Problems, we hope that our sharp error estimates for the most
widely used piecewise polynomial approximations will be adequate for
many practical purposes.

Chapter 8 gives a brief review of integral equation methods. Although
far less versatile and less widely used than difference or FEM methods,
these give extremely accurate results with little computation in some
important special cases. Moreover, their theoretical analysis is mathemati-
cally interesting for its own sake, involving considerations that help to
round out and complete Chapter 2.

Our book concludes with a short description of ELLPACK, a powerful
new system designed to solve elliptic boundary value problems. The
relevant tasks, such as placing .a .grid on a domain, discretizing the
differential equation and the boundary conditions, sequencing the result-
ing linear algebraic equations, Solving the system, and producing printed
or plotted output, are all done automatically by ELLPACK. ELLPACK
uses the approximation schemes explained in Chapters 3, 6, 7 and 8; it
solves the linear system by one ef the methods we discuss in Chapters 3,
4, and 5. ELLPACK can also be used to solve nonlinear equations, by
methods discussed at the end ‘of Chapter 6. Users’ programs are written
in a high-level, user-oriented language, which makes it easy to define a
problem and to specify a solution method and various kinds of output.

Much of the research whose fruits are summarized here was supported
by the Office of Naval Research, to which we are greatly indebted.
Purdue University, Carnegie-Mellon University, and the Fairchild
Foundation of the California Institute of Technology .gave additional
support for our work. We also thank William Ames, Donald Anderson,
Ronald Boisvert, John Brophy, "Wayne Dyksen, Vincent Ervin, Bengt
Fornberg, E. C. Gartland, Alan George, Charles Goldstein, Louis
Hageman, Elias Houstis, Lois Mansfield, Douglas McCarthy, John Nohel,
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Wiodzimierz Proskurowski, John Rice, and Donald Rose for many helpful
suggestions, comments, and criticisms. We also thank the Purdue
University Computer Science Department and Computing Center and the
University of Illinois Computing Center for their cooperation in preparing
our computer-produced text.

But above all, we wish to acknowledge-the patient and generous advice
given us by Richard Varga and David Young. As an expression of our
gratitude for this advice, and of our admiration for their many basic
contributions to the numerical solution of elliptic problems, we dedicate
this monograph to them. :

- Garrett Birkoff
Robert E. Lynch
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Chapter 1

Typical E Iliptic Problems

1. Introduction. The aim of this monograph is twofold: first, to
describe a variety of powerful numerical techniques for computing approx-
imate solutions of elliptic boundary value problems and eigenproblems on
high speed computers, and second to explain the reasons why these tech-
niques are effective.

In boundary value problems, one 1s given a parual differential equauon
(DE), such as the Poisson equation' u,, + u,, = f(x,y). to be satisfied in
the interior of a region €, and also boundary conditions to be satisfied by

" the solution on the boundary I'=0Q of Q. Such boundary value

problems involving elliptic DE’s arise naturally as descriptions of
equilibrium states, in many physical and engineering contexts. In
contrast, partial DE’s of parabolic or of hyperbolic type (like the heat
equation u, = u,, or the wave equation w,= u.J -arise naturally from
time-dependent initial value problems. in which the DE to be satisfied is
supplemented by appropriate im'rial conditions, to be" Satisfied (for
example) at time ¢ = 0.

For two independent variables, a general second-order linear d:ﬁerenual
~equation has the form

an . Au,o+2Bu,, + Cuy,, + Duy+ Eu, + Fu = G,

where 4 = A(x,y),---.G= G(x.,y). Such a DE is called elliptic when
AC > B?; this implies that 4 and C are nonzero and.have the same sign.
The DE (1.1) is called self-adjoint when B=0, D= A, ,and E= C,.. 4

~ We will emphasize the two-dimensional case n = 2, because numerical -

techniques have been most thoroughly tested in this case. Computations
involving unknown functions of three or more variables are usually costly. -
We will also emphasize second-order linear problems; for other problems,
see §87—9. For most second-order DE’s the following (.hdractenzatlon of
ellipticity is adequate

A subscriplcd letter signifies the derivative with respect to the indicated variable.



2 CHAPTER 1, §1

DEFINITION. A semi-linear second-order DE, of the form?

(1.2) 2 Z a;. ,(x)
i=1j=1

where x = (x;,---,x,) and Vu = grad u = Qu/dx, - -,0u/dx,), is called

elliptic when the matrix A(x) = || 4, ;(x)|| is positive definite (or negative

definite) identically, for all x in the domain Q of interest. This means

that, for nonzero q= (g, "', q,), the quadratic form X g, ;,(x)g,q, has

constant sign. It is /inear when

—f(x,u.Vu),

Foxu 9w = 3 b,(x) 2 e(x)u+g(x).
. j=1 -1 .

- Note that, since 9%u/dx;dx; = 8°u/dx; dx,, the matrix A = A(x) can
be assumed to be symmetric without loss of generality. Moreover, off-
diagonal terms can be combined as in (1.1), whose (symmetric) matrix is

A58
B C

an dap.

an amn

when n = 2. Finally, our definition is equivalent to the condition that
2 g, ,(x)g,q, = 0 implies q= 0.
Likewise, the fourth-order linear operator

Llul = Z a; (x) % 4 ‘6 — 2% +lower-order terms
is called elliptic at x when Za,\(x)ﬁ“n" has constant sign for
(&,m) #(0,0). The definition of ellipticity in the general case is similar
(see Bers-John-Schechter [64, p. 135]).}

The remainder of this chapter is devoted to reviewing some physical
and engineering problems to which numerical techniques are often
-applied. We do this for two reasons. First, the most familiar elliptic
problems originated in the attempts of nineteenth-century mathematicians
like Fourier to develop a science of mathematical physics. Second,
“~.scientists and engineers who solve elliptic problems today usually want to
describe sonie'specific phvsical phenomenon or engineering artifact.

S‘inc_e these problems are rooted in physics and other sciences, physical
intuition often helps one to decide: (a) how to approximate them

I Differential equations like (1.2), which are linear in the highest derivatives, are cailed
semi-linear; it the q; , depend also on w and Vu, they are called quasi-linear.
* 3 Numbers in square brackets abbreviate a year (e.g., [64] for 1964) and refer 1o an item
in the bibliography: letters in square brackets, such as [K], refer to the list of general refer-
ences given at the beginning of the bibliography.
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accurately, (b) which perameters are most important over which ranges,
and (c) whether erratic numerical results are due to physical or to
numerical instability. For these reasons, we describe the intuitive physical
background of some of the most commonly studied elliptic partial DE’s of
mathematical physics. We include examples which illustrate various
specific features of problems that influence the method of numerical solu-
tion. Some of these examples may be familiar to the reader, but we hope
their inclusion will help to make our mathematical (and numerical)
analysis more meaningful. The othess are included to indicate the enor-
mous variety of elliptic problems that arise in engineering and physics.

2. Dirichlet and related problems. The most deeply studied elliptic
boundary value problem is the Dirichlet problem. Mathematically, this
consists in finding a function that satisfies the n-dimensional Laplace
equation

nooa)
% B v2u=):gT‘;=o inQ, QCR",
i=1
in some bounded region  C R”, assumes specified values g(y) for all y
on the boundary T of (1, and is continuous in the closed domain
Q=0 UT. The boundary conditions assumed,

(2.1a) u(y)=g(y) onT,

are called Dirichlet boundary conditions.

Physically, n <3, and wu(x) = u(x,y,z) describes the equilibrium
temperature in a-homogeneous solid occupying {1, whose boundary I' is -
maintained at a temperature g(y). The Laplace equation can be derived
by assuming (with Fourier) the Law of Conservation of (thermal) Energy,
and that the flow (‘flux’) of heat energy at any point is proportional to the
temperature gradient Vu there.

The Laplace equation (2.1) arises in a variety of other physical contexts,
often in combination with other kinds of boundary conditions. In general,
a function which satisfies (2.1) is called harmonic (in €); the study of
harmonic functions (see Chapter 2) is called potential theory. Many prob-
lems of potential theory are described in Bergman-Schiffer [53], and in
Morse-Feshbach [53]. ‘

Exterior problem. The Laplace equation (2.1) is satisfied in empty
regions of space by gravitational, electrostatic, and magnetostatic
potentials (e.g., see [K]). Thus the electrostatic potential due to a charged
conductor occupying a closed domain @ = {) U T satisfies (2.1) in the
exterior £ of Q0 and, in suitable units,

(2.1b) u=1 onT, and uwu-—=>0 as r—>oo0,
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where r is equal to the length of x. The problem of solving (2.1) and
(2.1b) is called the conductor problem. It can be shown that as r tends to
infinity, w~C/r (here and elsewhere, f(x)~g(x) means that
f(x)/g(x)—1 as x—>o). In solving this problem, one must also
determine the capacity C which is the total charge that the conductor can
‘hold’ when at a unit potential or voltage. The capacity of a sphere of
radius a is clearly a, since ¥ = a/r is harmonic and satisfies (2.1b).
Likewise, the irrotational flows of an incompressible fluid studied in
classical hydrodynamics (see Lamb [32, Chaps. IV=VI]) have a ‘velocity
potential’ which satisfies (2.1); see §6. For liquids of (nearly) constant

density, this remains true under the action of gravity. Moreover, (2.1) is

also applicable to some problems of petroleum reservoir mechamcs in a
homogeneous medium (soil);* see §3.

Neumann problem. However, the boundary conditions which are
appropriate for hydrodynamical applications are usually quite different
from - those of (2.1a) or (2.1b). Thus, when w =9 is the ‘velocity
potential’, they are often of the form?

(2.1¢) 0p/dn = h(y) on I.

We will discuss some such applications in §6.

The problem of finding a harmonic function with given normal deriva-
tive on the boundary is called the Neumann problem; boundary conditions
of the form (2.1c) are called Neumann boundary conditions. In Neumann
problems for heat flow, the normal derivative of u is proportional to the
thermal energy flux and h(y) specifies this flux at each point of the
boundary. :

Mixed boundary conditions. More generally, in the theory of heat
conduction, it is often assumed that a solid loses heat to the surrounding
air at a rate roughly proportional to its excess surface temperature u
(Newton’s ‘Law of Cooling’). For k the constant of proportlonahty, this
leads one to solve (2.1) for the boundary conditions

(2.1d) - ' 6u/6n+ku =gly) onT, k>0,

where g(y) is the rate of absorption of radiant energy. Boundary condi-
tions such as (2.1d), of the general form

(2.1e) a(Yu+py)du/dn=g(y), Vaz(y)‘+Bz(y) #0,

4 See Muskat [37]; also P. Ya. Polubarinova-Kochina, Advances in Applied Mechanics 2.
Academic Press, 1951, 153—-221; A. E. Scheidegger, Physics of Flow through Porous Media,
Macmillan, 1957; and D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation,
Elsevier, 1977. ’

3 Here and below 9/dn denotes the exterior normal-derivative.
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are called mixed boundary conditions. (If the solid is cut out of sheet
metal, and so is essentially two-dimensional, the temperature can be
assumed to satisfy< (2.1a) and the modified Helmholtz equation
Uyy + Uy, = Au, X > 0, inside the solid, instead of (2.1).)

3. Membranes; source problems. Potential theory is concerned not
only with harmonic functions, but also with solutions of the Poisson
equation

(3.1) : -V = f(x),

in free space and in bounded domains, subject to various boundary condi-
tions such as (2.1a)—(2.1d). In the case x = (x;,x;) of two independent
variables, the DE (3.1) is satisfied approximately® by the vertical
deflection, z = u(x,y) = ulx;,x;), of a nearly horizontal membrane (or
‘drumhead’) under uniform lateral tension 7, which supports a load
Tf(x) per unit area. If such a membrane spans a rigid frame whose
height above I in the (x;,x;)-plane is given by a function g(y), ye€T,
the appropriate Dirichlet boundary condition is

3.1) u=gly) on F.

The special case g(y) =0 of (3.1') arises naturally in fluid dynamics.
The velocity field u(x,y) = (u(x,y),vu(x,y)) of any plane flow of an
incompressible fluid is determined by a stream function W(x,y).
Specifically, we have uw =0¢/dy and v = —0¥/dx, and consequently
divu = ¢, — s, = 0; moreover, the vorticity { = duv/dx—09u/dy satisfies
—V2y =, the Poisson equation. If the fluid is in a stationary simply
connected container with boundary T', then I' is necessarily a streamline,
and so we can assume ¢ = 0 on I'. "Hence the vorticity { (x, y) determines
the stream function ¢(x,y) as the solution of the Ponsson equation
-V ={ withy =0onT.

In our studies of numerical methods in later chapters we will study
repeatedly the following even more special case.

Example 1. The ‘Model Problem’ [Y, §1.1] defined by the Poisson DE
—V?%u = f(x) in the unit square S: 0 < x,y <1, with the boundary
condition ¥ =0 on I' = 8S, has many physical interpretations.’

For example, with f(x,y) =4, u(x,y) gives the deflection of a taut
elastic membrane held in a square frame, due to a small difference in air
pressure on the two sides. It also expresses the velocity profile associated
with viscous flow through a square tube parallel to the z-axis. Finally,

® In the ‘linearized approximation’, obtained by replacing sina =a—a’/3l+a’/5!—-.
with a,
7 See Synge [57, p. 130], for.fuller discussions of these interpretations.
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ulx,y) + (x?+y?) represents the ‘warping function’ of a long straight bar
with square cross-section under pure torsion.

For other domains Q with boundary I', the DE —V2u = f(x) in Q
with u = 0 on I' has analogous physical interpretations.

When n = 3, the DE (3.1) with f(x) = 47p(x) is satisfied by the grav-
itational potential of a continuous distribution of mass with density p(x)
(mass per unit volume). Likewise, it is satisfied by the electrostatic
potential of a continuous charge distribution having this densxty

A more general elliptic DE is

(3.2) Llul==-V:[p(x)Vul+g(x)u=f(x);, p>0 and ¢ >0.

Whereas the Laplace operator in (2.1) has constant coefficients, the linear
differential operator L{u] in (3.2) has variable coefficients. Moreover, the
Laplace DE itself leads to second-order linear elliptic problems with
variable coefficients when spherical, ellipsoidal, or other coordinate
systems are used.

The DE (3.2) is satisfied approximately by the temperature distribution
u(x) in a solid having space-dependent thermal conductivity p(x), in
which heat is being produced at the rate f(x) (energy per unit volume
and time); g(x)u gives the absorption. Since one may think of f(x) as
representing a source of heat, the DE (3.2) for specified boundary condi-
tions such as (2.1a)—(2.1d) is often szid to be a source problem. Such
source problems arise, typically, in the analysis of diffusion phenomena.

Similar elliptic problems having variable coefficients arise also in the
study of electrostatic, magnetostatic, and gravitational potentials, in which
the materials involved have physical properties (e.g., dielectric constants
or magnetic permeabilities) that depend on position. Moreover, a related
elliptic DE also arises from Darcy’s Law, in petroleum reservoirs occupy-
ing soils (or sands) of variable ‘permeability” k(x,y,z). As is explained
in Muskat [37, p. 242], the pressure p in such a reservoir satisfies

(3.3) —V [kVpl = pg dk/oz

In practice, k(x) is known only very roughly, and (like thermal and
electrical conductivity) it can vary by orders of magnitude.

4. Two-endpoint problems. The problems described in §§2—3 have
counterparts which involve functions of one space variable, and hence
lead to ordinary DE’s. Since the boundary of a one-dimensional domain
(interval) consists of two points, such problems are often called two-
endpoint problems. The numerical techniques which are most effective for
solving such two-endpoint problems are very different from those used in
two or more dimensions. However, we have devoted this section to them
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because they illustrate so simply various kinds of boundary conditions and
other basic ideas. '

Example 2. The simplest two-endpoint problem concerns a transversely
loaded string, in the small deflection or linear approximation. (For some
nonlinear elliptic problems, see §9.) If the string (assumed nearly
horizontal) is under a constant tension 7, then the deflection y induced
by a load exerting a vertical force f(x) per unit length satisfies the
ordinary DE

(4.1 —y-=fix)/T,

If the endpoints of the string of length 4 are fixed, then the deflection
also satisfies the two-endpoint conditions

4.1 + y(0) = y(a) =0.

The differential operator Llu#] = —d?/dx? on the left side of (4.1) is a
linear differential operator with constant coefficients; it is linear because for
any constants «,f and functions® y, z € C2[0,4], clearly

Lliay +B8z] = aLlyl +8LI[z].

The differential equation (4.1) is inhomogeneous since its right side is
nonzero. On the other hand, the boundary conditions (4.1') are linear
and homiogeneous. .

To solve (4.1)—(4.1"), first note tha' for any continuous f(x), the func-
tion

1 x
g =—1 [ G 0s0 ar
is a solution of (4.1) satisfying the initial conditions g(0) = g'(0) = 0.°

The general solution of (4.1) is g(x)+a +Bx, where a and 8 are arbi-
trary constants. To construct the solution satisfying (4.1"), set @ = 0 and

P! g
B—ﬁj;(a 1) f(1) dt.

The problem of a vertical loaded spring is similar. If p(x) is the (vari-
able) stifiness of the spring and f(x) is the load per unit length, then the
appropriate DE for vertical (longitudinal) displacement u(x) is

(4.2) —[p(Du'l=f(x), plx)>0.

8 The symbol C*[0,a] denotes the set of ‘functions on the interval [0,a] whose k-th
derivative exists and is continuous.

% In other words, G (x;1) = (x— 1) is the Green’s junction for the operator L for x > 0 and
the initial data g(0) = g'(0) = 0 (Birkhoff-Rota [78, Chap. 2, §8]).
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Here the linear differential operator L{ul=—[p(x)u']l' has variable
coefficients. If the spring is held fixed at x = 0 and the other end is free,
. then one has the boundary conditions

4.2) u(0) =0, u'(a) =0.

If a mass m is attached to the bottom of the spring, then the second
condition in (4.2") is replaced with u'(a) = mg/p(a), where g is the
acceleration due to gravity.

Sturm- Liouville systems. As a third example, we consider Sturm-
Liouville systems. These typically arise from separating out the time vari-
able from simple harmonic solutions of time-dependent problems such as
that of a vibrating string p(x)u, = [ p(x)u,], with variable density p (x)
and tension p(x). -With u(x,1) = y(x)cos kt, one gets homogeneous
linear DE’s for y of the form [p(x)y'l'+ k2p(x)y = 0, or, more gen-
erally,

4.3) [p(x)y'V+[Ap(x)—q(x)]ly=0, p>0, p>0,

in which A = k? is a parameter, and homogeneous linear boundary condi-
tions of the form (4.1'). More generally, Sturm-Liouville systems can
involve separated boundary conditions of the form

(4.3)  agp©0) +Bey'0) =a,y(a)+B,y'(a) =0, «2+B2>0.

Problems like (4.3)—(4.3") which involve the solution of a homogeneous
linear (elliptic) DE for homogeneous boundary conditions and unknown
values of a parameter A are called eigenproblems. The values of the
parameter for which nontrivial solutions'® exist are called eigenvalues, and
the solutions themselves are called eigenfunctions. It is well known that
any Sturm-Liouville system (4.3) with separated boundary conditions
admits an infinite sequence of real eigenfunctions ¢,(x) with real
eigenvalues A; <A; <A3 <---, where A; —> oo, A

Other endpoint conditions. Many kinds of ‘endpoint conditions’ can be
prescribed for Sturm-Liouville systems. Thus, for the trigonometric DE
y"+Ay = 0, the Mathieu equation

(4.4) y'"+(A+pcosx)y =0,

and other second-order DE’s with periodic coefficients, one typically wants
solutions which satisfy periodic boundary conditions such as

4.4 y(0) =y@2m), y'(0)=y'Qm).

10 The .‘trivial’ solution is y = 0. For a fuller discussion of Sturm-Liouville problems and
the endpoint conditions which are appropriate for them, see Birkhoff-Rota [78, Chap. 10].



