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TO THE READER

The aim of this little book is to “bridge the gap” between the calculus
you’ve learned in your mathematics classes and the calculus used in
your physics courses. It has been my experience, based on several
years of teaching physics, that many students who are reasonably
familiar with the techniques of calculus are not familiar with the
meanings of the derivative, differential, and integral when applied to
physics. This book is an attempt to help such students and is an
outgrowth of notes I distributed in my physics courses.

The book concentrates on explaining the meanings and uses of the
key concepts of calculus as applied to elementary physics. However,
its aim is not to teach physics per se, and the physics used is kept as
simple as possible. The emphasis is on the derivative as a rate of
change, the use of differentials as small quantities, and the integral as
a sum, all in the context of physics. The book assumes you have taken,
or are taking, a course in calculus, so it reviews the definitions and
‘techniques of differentiation and integration, but does not attempt to
teach them from the beginning. It is also assumed that you are familiar
with elementary algebra and trigonometry, but a brief review of the
latter is given in an appendix.

This book is essentially designed for self-study by a student who is
beginning to learn physics. I would suggest that you work through the
material fairly slowly, using your calculus book to refresh your mem-
ory, if necessary, on mathematical points. Most sections of the text
conclude with a few exercises. These are designed to reinforce the
concepts just presented and to give you practice in using them. The
exercises are not meant-to-be a challenge and are both straightforward -
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X TO THE READER

and moderate in number so you may realistically do them all. I suggest
that you fry the exereises as you work through the book. Detailed
solutions (not just answers) to the exercises are given in the back of
the book and should be consulted after you've given the problems a
try. _
- I’ve made a real effort to explain the concepts clearly. In fact, you
"may sometimes think that I’m overexplaining. However, repetition is a
useful tool in teaching, and I'd rather say too much about an im-
portant topic than say too little. In the same vein, I've tried to write in
an informal tone, just as if I were lecturing to a small class. I've also
kept this book short by concentrating on material I believe to be really
important for physics. Calculus books today seem to run upwards of
1000 pages, possibly making them difficult to use as a reference or for
self-study. I hope this little book will help you in your study of physics
by making these important ideas more accessible to you.

The book has profited from the valuable comments of Ivanna
Juricic, who also read the proofs with a meticulous eye, R. B. Hallock,
T. D. Maclver, S. E. Rosser, and S. J. Shepherd, but the responsibility
for errors is mine alone. It is again a pleasure to thank John Clarke for

" his generous hospitality at the Lawrence Berkeley Laboratory. The
manuscript was typed with exceptional skill by Claudia Madison, to
whom I extend sincere thanks for her help.

Richard Dalven
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CHAPTER

ONE
VARIABLES, FUNCTIONS, AND GRAPHS

INTRODUCTION

The aim of this chapter is to introduce much of the terminology we
will use in the later chapters, and to review some of the basic concepts
you have learned in your calculus course. These are variables, func-
tions, and graphs. The point of view, however, will be that of the
physicist, not the mathematician. The concepts we will dxscuss here are
things we will use frequently as we progress.

VARIABLES AND FUNCTIONS

A variable is a quantity which may take on different values in the
course of the discussion of some question. An example might be the
radius r of a circle during a discussion of geometry. The idea of a
variable should be contrasted with that of a constant, which is a
quantity having a fixed valuc. Examples of constants are the numbers
6, 21, 7, etc. The variable (or variables) under consideration in some *
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situation will be denoted by appropriate and convenient symbols; an
example is the symbol r for the radius of a circle.
———Suppose x-and y-are-both-variables:- A function is &fu}eeenﬁeetmg
~the two variables x and y such that, if the value of one variable (say x)
is given, the value of thc other vanable is determined. For example,
suppose Tt

e ,L—;; . a1

Eq (1. l) tells us that the value of the variable y is equal to the square
of the value of the variable x. Eq. (1.1) therefore tells us that y is a
function of x because, if we know the value of the variable x, the value
of the variable y is determined. For exampie, if x = 2, y = 4, we say
that Eq. (1.1) gives the variable y as a function of the variable x, or,
more simply, Eq. (1.1) gives y as a function of x. In Eq. (1.1), assigning
a value to x determines the value of y. We call x the independent
variable in the function y = x? given in Eq. (1.1). The variable y is
called the dependent variable, since the value of y depends on the value
of x. In discussing Eq. (1.1), we say that y is a function of x, or that -
there exists a functional relationship between the variables y and x.

The function y = x? in Eq. (1.1) is such that only a single value of
the dependent variable y corresponds to each value of the independent
variable x. Such a function is called single-valued. Functions for which
there are more than one value of the dependent variable for each value
of the independent variable are called many-valued functions. An
example of a many-valued function is y = + yx, in which there are
two values of y for each value of x. When we indicate a square root, as
in Vx, or (1 — x)'/2, we mean the positive square root; the negative
square root would be indicated explicitly, as — Vx, or —(1 — x)1/2,

. Most of the functions we will encounter will be single-valued.

- Given the existence of a functional relationship between the
variables y and x, then the set of values which the independent
variable x may take on is called the domain of the function. The set of
values which the dependent variable y may take on is called the range
of the function.

Consider a second example. The familiar relation between the
area A of a circle and its radius r is given by Eq. (1.2). Eq. (1.2), —

A =qr? (1.2)

expresses the area 4 as a function of the radius r; 7 is a constant.
__From Eq. (1.2), if the value of the independent variable r is specified,
then the value of the dependent variable A4 is determined according to

the function (1.2) which gives 4 as a function of r.
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In physics, the variables with which we deal are almost always
quantities with a physical meaning and are things that can be mea-
suted. For example, the variables 4 and r in Eq. (1.2) are the area and
radius of a circle, both of which are quantities with a physical meaning
and which can be measured if we wish. We may contrast the case of
Eq. (1.2) with that of Eq. (1.1), in which the variables x and y are
mathematical symbols, whose physical meanings (if any) are not
specified. In dealing with physical problems, it is helpful to keep in
mind the meanings of the symbols with which we deal. In physics, we
will constantly be working with functions which give a dependent
variable of physical interest in terms of an independent variable (or
variables) which will also be physically interesting and measurable
quantities.

As a final example of a function, recall the familiar result from
elementary physics that “distance equals rate times time” for a body
moving with constant rate or speed. If the symbol s is used for
distance, v for speed or rate, and ¢ for time, our familiar result is
expressed by

s=vt (1.3)

Eq. (1.3) gives the distance s (the dependent variable) as a function of
the time ¢ (the independent variable) in the case in which the speed v is

e A e A A A A

constant, so vis not a variable in this situation. Eq. (1.3) introduces us
to a most important independent variable in physics—the time. Much
of physics is concerned with how different quantities vary with time,
so physics is often concerned with equations, like Eq. (1.3), giving
some quantity as a function of time.

Exercises
1.1 Consider the variables w and u connected by the function

w=Tu>+ 6u+3
Which is the independent variable? Which is the dependent variable?

1.2 Eq. (1.1) above gives y as a function of x. Use Eq. (1.1) to obtain an equation giving
x as a function of y. In the functional relation you obtained, identify the dependent and
independent variables.

1.3 A familiar geometric relation is that between the circumference C and the radius r
of a circle, which says that the circumference is the constant 2 times the constant 7 times
the radius of the circle. Write the equation giving C as a function of r. In the functional
relation between C and r, which is the dependent and which is the independent variable?
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FUNCTIONAL NOTATION

We now discuss a few points concerning the notation used to express
functions and functional relationships between variabies.

The existence of a general functional relationship between two
variables x and y may be indicated by writing

y =f(x) (1.4)

an equation which tells us that the dependent varnable y is some
function f of the independent variable x, but we are not told what the
specific function is. Eq. (1.4) does tell us, however, that y is a function
of x, so y depends on x. If the specific function f is known, then that
information may also be given. For example, in the example in Eq.
(1.1) in which y = x?, the specific function f is given, so we may write

y=f(x) =x* (1.5)

Eq. (1.5) says that the dependent variable y is a function f(x) of the
indépendent variable x, and that the specific function f(x) is x2.

A situation often encountered in physics is the following. Suppose
y is some function f of x, so

y=f(x) (1.6)
and the variable x is itself a function g of another variable ¢, so
x = g(1) (1.7)

Eq. (1.6) says y is a function f( x') of the variable x; Eq. (1.7) says x is
a function g(r) of the variable 1. One can combine Egs. (1.6) and (1.7)
by writing
g y =718 ot 175
Eq. (1.8) says that the variable y is a function f of the function g(¢) of
the variable ¢, so the dependent variable y is ultimately a function of
4he independent variable 7. One also describes the situation in Eq.
(1.8) by saying that y is a function f of the function g of .
As an example, suppose we have the relations

y=f(8)=sin@ (1.9)
0=g(t) = wt (1.10)

where, in Eq. (1.10), @ is a constant. Eq. (1.9) says that the variable y
is a function (the sine) of the variable @, while.@ is a function of the
variable . We may combine Egs. (1.9_) and (1.10), using Eq. (1.8), to
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give :
y = sin wt (1.11)
showing that y is a function of 7.

Finally, one sometimes sees notation like the following. Suppose y
is a function of x; one may write this functional relationship as

y=y(x) L)

simply to conserve symbols (which, surprisingly, are sometimes in
short supply). Eq. (1.12) says that y is some (unspecified) function of
x, so Eq. (1.12) conveys the same information as Eq. (1.6) but uses
fewer symbols to do so. In physics, one frequently sees the relations
like

"

x = x(t) (1.13)
y=y(1) - (1.14)

saying that x is a function of 7 and y is a (different) function of ¢, so, in
Egs. (1.13) and (1.14), ¢ is the independent variable in both equations.

FUNCTIONS OF SEVERAL VARIABLES

In the preceding sections, we discussed a function

y = f(x) (1.15)

in which y depends on the single variable., x. The function f(x) in Eq.
(1.15) 1s a function of one independent variable. We may also consider

functions of more than one variable, such as >

w=g(x,y) (1.16)

- Eqg. (1.16) says that the dependent variable w is a function of the two
independent variables x and y; if values of x and y are specified, then
the value of w is determined. Note that the two independent variables
x and y are independent of each other, so x and y are separate
independent variables.

An example of a function of two variables of the type given in Eq.
(1.16) is

w=g(x, y)=x*+y? : (1.17)
A second example is the expression
V = mrlh (1.18)

for the volume V of a right circular cylinder of radius » and height 4.
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In Eq. (1.18), ¥ is a function of r and 4, both of which are indepen-
dent variables, so the volume V is a function V(r, h) of r and h.
Another example is the function

y =y(x,1t) = Asin(kx — wt) (1.19)

where A4, k, and w are constants. The function in Eq. (1.19) gives y as a
sinusoidal function of the two independent variables x and .

While we will, in this book, usually restrict ourselves to dealing
with functions of one variable, we will, on occasion, introduce func-
tions of more than one variable.

VALUE OF A FUNCTION AT A POINT

Generally, the independent variable x in a functio..

y=f(x) (1.20)

will take on a set of values called the domain of the function. What
this set of values is will be determined by the particular function, the
~ physical situation being discussed, etc. We will often wish to consider
the value of the dependent variable y for some particular values of x.
For example, if

y=f(x) = (1.21)

then y = 4 when x = 2. We say the function y = f(x) = x? has the
value 4 when x = 2, or, equivalently, that the function y = 4 at the
point x = 2. (The use of the term point for a particular value of x
refeis to the point on the x axis, such as x = 2, corresponding to the
value of x. Thus we refer to the value of a function at a point.)

If y is a function f(x) of x, as in Eq. (1.20), then there is a
common notation used to indicate the value of f(x) for some particu-
lar value of x. It is usual to denote particular values of a variable by

“putting a subscript on the variable. Thus

X =x (1.22)

is an equation saying that the variable x has the particular value x,. In
the example above, we consider the case in which x has the value 2, so
we were considering

X=x =2 (1.23)

meaning that the variable x has the particular value x, = 2. If, at the
same time, we wished to consider a different particular value of x, we
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might call it x,. For example, we might consider
X=x,=25 (1.24)

as a second particular value of x.
If we are considering a function

y=f(x) ' (1.25)
and if the independent variable x has the value x; so
X =Xx (1.26)

then we indicate the value of the function f(x) when x has the value
x, by the notation

f(x) (1.27)
Expression (1.27) stands for the value of the function f(x) when

X = x,, Or, saying it in another way, the value of the function f(x) at
the point x = x;. As an example, let’s return to the function

y=f(x)=x* (1.28)
and find the value of the function (1.28) when x has the value 2, i.e.,
when :

X=X =2 (1.29)
Using the notation described above, we have
f(x)=(x)"=(2"=4 (1.30)
Since x; = 2, we-can (and will often) also write
f(2) (1.31)

for the value of the function f(x) when x = 2. Similarly, when x = 5,
f(5) is the value of the function f(x) when x = 5.

To summarize, if y is a function f(x) of x, so y = f(x), then f(x,)
is the value of the dependent variable y, and of the function f, when
the independent variable x has the value x;.

These ideas may be extended to a function of several variables.
Suppose '

w,=f(x,y) (1.32)
is a function of the two variables x and y. Then
f(x1, )

is the value of the function f when x has the value x, (i.e., x = x,) and
y has the value y, (i.e., y = y,). For example, suppose

w=f(x,y)=x>+y? (1.33)
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What is the value of f(0, 2), which is the value of the functionfwhen
x = 0 and y = 2?7 From Eq. (1.33),

10.2)=(0) +(2)" = 4. (1.34)
Note also that we may sometimes wish to consider a function like
f(x, y) for a particular value of one independent variable but for any
value of the other independent variable. As an example consider the
function f in Eq. (1.33) when x = 0; then we have

£(0.5) = »? ; £1.35)
as the value of f(x, y) when x = 0. In this case the “ value” of 40, y)
is itself a function (in this case the function y?) and not just a number.

Exercises

1.4 Given the function
y= ()= Ixk+?
Find (a) f(2); (b) £(0); (¢) f(—1).
L5 Given the function
' y(x,1) = Asin(kx — wt)
where A, k, and w are constants. Find expressions for: (a) y(0,0); (b) (0, r); (¢) y(x,0)
1.6 Given the function y = f(x) = (1 — x?)"/2. Find f(x — a), where a is a constant.

Note that f(x — a) is obtained by replacing the independent variable x in f(x) by the
new variable (x — a).

THE GRAPH OF A FUNCTION

When we are considering a function, it is usual in physics to display
the functional relationship between the dependent and independent
variables by means of a graph of the function. Suppose we are
considering a function

y =f(x) (1.36)
We can assign a series of values to the independent variable x, and,
from the functional relationship in Eq. (1.36), obtain the correspond-
ing values of the dependent variable y. For example, if the specific
function under discussion were

y=f(x)=x? (1.37)
we would obtain the table of values below for integral
R s o T R s
| 0 | el asyuaied 16 ol 28
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values of x between 0 and 5. However, it is difficult from a table of
values to “see” the behavior of the function f(x) as x takes on various
values. For this reason it is usual to construct a graph of the function.
The definition of a graph is as follows. The graph of the function
f(x) is the set of all points with rectangular coordinates (x, f(x)).
Here the notation (x, f(x)) means the point whose abscissa (x coordi-
nate) has the value x and whose ordinate ( y eoordinate) has the value
f(x). For our example in Eq. (1.37) .the graph of the- functlon
“y = f(x) = x? is the set of all- -points with coordinates (x, x ) Six
such points, (0,0), (1,1), (2,4), (3,9), (4,16), and (5. 25) are seen in the
table above. These six points are, of course, not all of the points
comprising the graph of the function y = f(x) = x?; there are an
infinite number of other points, such as (2.5, 6.25), with the form
AT
If we plot, in two dimensions, all of the pomts of the form
(x, f(x)), we obtain the graph of f(x). For our example, we plot
points of the form (x, x?) and obtain the graph shown in Fig. 1.1. In
that figure, we plot y = f(x) = x? vertically (ordinate) and x horizon-
tally (abscissa) and obtain the curve shown in the figure. The graph is
the set of all points whose coordinates (x, y) satisfy the functional

y=x2 &
i
254 :
Graphof y = x2
20t :
15 -
10+
P
13—
|
5 |
.. l
|
l
0 I ! 1 | i
0 1 2 E 4 -y

2.7

Figure 1.1 Graph of the functiony = f(x) = x*for0 < x < 5.
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relation y = x* given in Eq. (1.37). Therefore, any point on the graph
(or curve, as it is also called) has coordinates (x, y) such that y = x2.
The point P, for example, has coordinates (2.7, 7.29). From the figure,
we can “see” how the function y = f(x) = x? varies with x.

In general, then, if we have the graph of the function y = f(x)
plotted as a function of x, we may find the value of the function for
any value x = x, of x by reading it off the graph. The point (x,, f(x,))
will be a point on the graph, so, knowing the value of x, determines
the value of f(x,). In Fig. 1.1, in which f(x) = x?, we considered the
point x; = 2.7 on the x axis; the y coordinate of the point P can be
read to be f(x;) = 7.3, as shown in the curve in the figure. Note that
we can read the value of f(x,) = f(2.7) off the graph in Fig. 1.1 only
approximately. From the graph, we read f(2.7) = 7.3, which may be
compared with the exact value f(2.7) = (2.7)> = 7.29. (It should be
pointed out that, in physics, the reading of graphs in this manner is
frequently necessary for graphs of experimental data for which the
functional relationship is not known. In such cases, the reading of
values is necessarily approximate.)

There are a number of functions of one variable whose graphs are
frequently encountered in physics. One is the parabola, an example of
which is seen in the graph of y = x* in Fig. 1.1. From analytic
geometry, we know that the general quadratic equation

y=f(x)=ax*+bx+c (1.38)

where a, b, and ¢ are constants, has as its graph a parabola whose axis
is parallel to the y axis. In our example above, in Eq. (1.37), y = x?is
the special case of Eq. (1.38) for whicha=1and b =c¢ = 0.

A second important function in physics is of the form

y=f(x)=mx+b (1.39)

where m and b are constants. Eq. (1.39) shows a function whose graph
is a straight line of slope m which passes through the point whose
coordinates are y = b, x = 0. We recall that the slope m of the straight
line (1.39) is defined as the tangent of the angle the line makes with
the positive direction of the x axis. The point (0, b) is called the y
intercept of the line. As an example, consider the function

y=f(x)=2x+1 (1.40)

whose graph is shown in Fig. 1.2 for values of x between 0 and 3.
Comparison of the function in Eq. (1.40) with the general form of the
straight line given in Eq. (1.39) shows that the y intercept is at the
point (0,1) so b =1 in Eq. (1.39). In the Fig. 1.2, @ is the angle



