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Mathematics

The Rog~ers'—Ramanujan identities are a pair of infinite series—infinite prod-
uct identities that were first discovered in 1894. Over the past several de-
cades, these identities, and identities of similar type, have found applica-
tions in number theory, combinatorics, Lie algebra and vertex operator
algebra theory, physics (especially statistical mechanics), and computer sci-
ence (especially algorithmic proof theory). Presented clearly and coherently,
An Invitation to the Rogers-Ramanujan Identities is the first book entirely
devoted to the Rogers--Ramanujan identities and includes related historical
material that is unavailable elsewhere.

Features
¢ The first book focused entirely on the Rogers—Ramanujan identities.
¢ Prerequisites kept to a minimum, although a some mathematical
fluency and sophistication will be required.
° Material is presented in a generally historical order, but author does not
hesitate to (anachronistically) introduce modern methods as necessary,
-when doing so will greatly simplify the presentation.
¢ _Previously unpublished primary source historical material is included
: wﬁere appropriate.

Andrew Sills earned his PhD in 2002, from the University of Kentucky, un-

der George E. Andrews, Evan Pugh Professor of Mathematics, Pennsylvania

State University. He was Hill Assistant Professor of Mathematics at Rut-

gers University from 2003-2007 and a tenure-track Assistant Professor at

Georgia Southern University between 2007-2011. In 2011, he was promoted
Associate Professor at Georgia Southern, and became a full Professor of
Mathematics, in 2015. He is a permanent Member of DIMACS (Center for
Discrete Mathematics and Computer Science), since 2011. His research
during 2014-2015, was partially supported by a grant “Computer Assisted
Research in Additive and Combinatorial Number Theory and Allied Areas”
funded by the National Security Agency.
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The only known photograph of L. ]. Rogers appears on the cover and on page xv. This photo appeared,
undated and uncredited, in Rogers’ Royal Society obituary in December 1934.

The image of S. Ramanujan appearing on the cover and on page xvi is from one of four extant
photographs of Ramanujan according to Bruce Berndt, “The Four Photographs of Ramanujan,”
Ramanujan: Essays and Surveys, ed. B. C. Berndt and R. A. Rankin, in: History of Mathematics,
vol. 22, American Mathematical Society and London Mathematical Society, 2001. The photographer
is unknown, but according to Berndt, the photograph was likely taken during the summer of 1916.

The publisher believes both images to be in the public domain.
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Foreword

[ first met the Rogers—Ramanujan identities in the fall semester of 1961 at
the University of Pennsylvania. The course was taught by Hans Rademacher,
one of the great number theorists of the twentieth century. He clearly was
in agreement with Hardy’s comment that “[iJt would be difficult to find more
beautiful formula than the ‘Rogers—-Ramanujan’ identities” [Ram27, p. xxxiv].
Rather poignantly, he believed that D. H. Lehmer had proved that these two
identities were an isolated phenomenon. While this belief later turned out to
be false, it is clear that Rademacher found these results to be so beautiful
that it was important to reveal such esthetic excellence to beginning graduate
students.

Rademacher’s pessimistic view of the Rogers—Ramanujan identities as
beautiful but singular results turned out to be far from the truth.

The recognition of the Rogers-Ramanujan identities as the tip of a re-
search cornucopia is surely attributable to Basil Gordon’s generalization in
1961 [Gor61]. Rademacher was completely unaware of Gordon’s paper, and,
consequently, so were all of his students (including me). I would note that
in “Some Debts I Owe” [And01], I mention how Rademacher’s proof of the
Rogers-Ramanujan identities led me to an independent discovery of Gordon’s
theorem. I was truly deflated when I learned of Gordon’s work months after I
had submitted this grand generalization for publication.

To make a long story short, I was completely captivated by the Rogers—
Ramanujun identities after Rademacher’s enticing reénactment of Schur’s
proof. Since then they have been a constant theme in much of my research.

Now Andrew (Drew) Sills has put together this great introduction to these
fascinating results. Drew was my student and wrote his PhD thesis under my
direction, elucidating and extending the work of Lucy Slater on a variety of
g-series identities of Rogers-Ramanujan type.

This is a marvelous book. Drew has drawn on his encyclopedic knowledge
of the literature to prepare this coherent and exciting account of the Rogers-
Ramanujan identities and the aftermath. The book has numerous exercises
and so could well be used as a text in a graduate course. Drew has clearly in
mind that this book is an introduction. So, more advanced topics are saved
to the final “But wait...there’s more” chapter where pointers are given to
sources in the literature.

But wait. . . there’s even more! Appendix A provides an extended version
of Lucy Slater’s list, plus an extended list of false theta function identities,
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Xiv Foreword

and Appendix B contains some of the wonderful letters written by the early
pioneers of the subject.

This is wonderful. Thank you, Drew, for this excellent book!

George E. Andrews

Evan Pugh University Professor in Mathematics
Pennsylvania State University

University Park, PA 16802



Preface

Leonard James Rogers (1862-1933)

In 1894, a relatively unknown English mathematician at Yorkshire College
named Leonard James Rogers published a paper entitled “Second memoir on
the expansion of certain infinite products,” in the Proceedings of the London
Mathematical Society [Rog94|. This second installment of a three-part series
on the expansion of infinite products was 26 pages long. Buried on the tenth
page of this paper, and written in obscure notation, is an identity of analytic
functions, valid when |g| < 1, that later came to be known as the first Rogers
Ramanujan identity [Rog94, p. 328]:

XV
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What we now know as the second Rogers—-Ramanujan identity occurs two
pages later [Rog94, p. 330]:

n 24n
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G. H. Hardy’s account of how (0.1) and (0.2) were discovered by Rogers, ig-
nored by the mathematical community, only to be rediscovered (conjecturally)
many yvears later by Srinivasa Ramanujan is quoted in Chapter 2.

Srinivasa Ramanujan (1887-1920)

The uninitiated will naturally wonder how any author could purport to
write an entire book about nothing more than a pair of identities of ana-
lytic functions. In contrast, experts in the field will realize immediately upon
picking up this volume that it cannot possibly be long enough to adequately
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discuss the multitude of subjects arising from (0.1) and (0.2). In the interest
of full disclosure, yes, this volume is but an introduction to certain aspects of
the Rogers—Ramanujan identities, and an invitation to study further.

The Rogers-Ramanujan identities, and identities of similar type, arise in
number theory, analysis, combinatorics, the theory of integer partitions, ver-
tex operator algebras, representation theory of Lie algebras, statistical me-
chanics, and knot theory. A goal of this book is to present and develop the
Rogers-Ramanujan identities from the perspective of the theory of basic hy-
pergeometric series and the theory of integer partitions. Historical material,
in the form of remarks, and in some cases longer quotes and explanations,
is woven into the narrative. While I have in some sense attempted, in broad
terms, to present the material in a kind of “historical arc,” I have, for mathe-
matical efficiency and expediency, introduced modern techniques as required.
For example, I begin with a “prehistory” chapter where integer partitions and
hypergeometric series are introduced in order to set the stage for the unveiling
of the Rogers—Ramanujan identities in the next chapter. However, in order to
deal with hypergeometric series and their generalizations efficiently, I intro-
duce the techniques of Wilf and Zeilberger, which of course made their debut
nearly a hundred years after the discovery of the Rogers—Ramanujan iden-
tities. This is done so for two reasons: to convey how modern practitioners
approach (g-)hypergeometric series, and so that a plethora of useful classical
results can be dispensed with via one-line proofs.

In the course of this work, I take the liberty of not attempting to make
the narrative entirely “self-contained” in the sense that I mention related
topics and results of interest, even if I do not have the space to fully develop
the topic and give proofs of those results. To this end, one of the purposes
of this book is to alert interested readers to what related material is in the
literature and guide them to that literature. A case in point is the Rademacher
convergent series for the unrestricted partition function, and related results
for various restricted partition functions. A number of my students over the
years were instantly enthralled with these theorems and were led to study the
circle method as a result. Accordingly, I mention them in this book, but as
excellent expositions of the circle method are readily available elsewhere in
the literature, I direct the readers to those sources rather than providing a
similar development here.

In another attempt to engage readers who may be interested in the lives of
some of the people who are responsible for the mathematics discussed in this
book, I have included in an appendix transcriptions of letters written by W. N.
Bailey to Freeman Dyson and to Lucy Slater. Readers will gain some “inside”
information on how the mathematics is actually done, before it was ready to
be written up as the polished final product that we read in the journals.

The mathematical prerequisites assumed are fairly minor. In some sense,
not much beyond an elementary calculus course and an introductory number
theory course is required to follow the statements and proofs of the theo-
rems included. On the other hand, a certain level of mathematical experience
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and sophistication is required to fully appreciate the material presented. For
instance, I have found that in most cases, students who have recently com-
pleted a year of calculus, and thus have some experience with power series,
are nonetheless not quite ready to work with generating functions. The first
two chapters are long and contain many exercises. These two chapters alone
could easily form the material of a special topics graduate course. Chapters
3-5 contain more advanced material, and fewer explicitly stated exercises, as
graduate students and practitioners at this level will have the sophistication
to ask themselves relevant questions, and practice as needed to master the
material to their own satisfaction. Chapter 6 contains eight sections, each of
which, if more fully developed, could have been a chapter in its own right.
The interested reader is pointed to the literature for more information.

All that having been stated, I hope that there is plenty contained in this
volume to engage both graduate students and strong undergraduates, as well
as material that professional mathematicians and scientists will find both use-

ful and delightful.

Andrew Sills
Savannah, Georgia
June 2017
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