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Digital Waveform Generation

This concise overview of digital signal generation will introduce you to powerful,
flexible and practical digital waveform generation techniques. These techniques, based
largely on phase accumulation and phase—amplitude mapping, will enable you to
generate sinusoidal and arbitrary waveforms in real-time with independently controlled
waveshape, frequency, phase offset and amplitude, and to design and optimise bespoke
digital waveform generation systems from scratch.

The book includes a review of key definitions, a brief explanatory introduction to
classical analogue waveform generation and its basic conceptual and mathematical
foundations, coverage of recursion, DDS, IDFT and dynamic waveshape and spectrum
control, and a chapter dedicated to detailed examples of hardware design, accompanied
by downloadable Mathcad models created to help you explore ‘what if?’ design
scenarios. It is essential reading for practitioners in the digital signal processing
community, and for students who want to understand and apply digital waveform
synthesis techniques.

Pete Symons is a professional engineer with over 30 years” experience in the design of
digital and analogue signal processing systems, and is Chief Engineer at Avalon
Sciences Ltd. He has held numerous positions in industry, including Chief Engineer
for the Special Projects Research Group at Thales UK, and Group Leader of the
Electronics Research Group at the Atomic Weapons Establishment, UK. He is a
Chartered Engineer, and a Fellow of the IET.



‘Symons writes with admirable precision and attention to detail in describing techniques
for arbitrary waveform generation based upon Direct Digital Synthesis principles.
Newcomers to the topic and seasoned practitioners alike will benefit from the extensive
tutorial content supporting the theoretical foundations, synthesis algorithms and pro-
cessing architectures employed in the implementation of these powerful and flexible
techniques. A notable feature is the inclusion of simulated performance results for
several arbitrary waveform phase-amplitude mapping algorithms, illustrating the
dependence of the amplitude spectrum and other performance metrics on a range of
design and control parameters.’

Mike Meade, Open University

“This is a very readable signal processing book — comprehensive in scope, and thorough
in presentation. Clear explanations, detailed illustrations, and practical implementation
guidance make it a welcomed addition to the literature of modem-day digital waveform
generation.’

Rick Lyons, Besser Associates



Preface

Most electronic design engineers, irrespective of being the ‘analogue’ or ‘digital’
variety, are occasionally faced with the task of designing an oscillatory signal generator
with particular implementation constraints, control and performance requirements.
These requirements might include extremely low distortion, unusual ‘application spe-
cific’ waveshape, wide frequency tuning range, low temperature drift, and so on.
Historically, such a task will have been tackled with a wholly analogue design, possibly
augmented by digital control, where extremely high levels of performance are evident in
some cases. If we take high-end audio test instrumentation as an example, the now
legendary Hewlett Packard HP8903B and Audio Precision AP1 audio test sets both use
digitally controlled analogue state variable oscillators to generate extremely low distor-
tion sine waves. The state variable analogue oscillator is effectively an analogue
computer model designed to compute solutions of a second-order differential equation.
A specific class of solution (under certain parametric conditions) is a continuous
sinusoidal oscillation. These generators are outstanding examples of what can be
achieved with innovative analogue design. However, the world is becoming increas-
ingly digital and very high levels of digital processing power can be implemented at
relatively low cost. Various ‘all digital’ waveform generation techniques are therefore
now practicable; and when all of their advantages are weighed up against the disadvan-
tages (ves, digital processing is not necessarily a panacea to guarantee ideal perform-
ance), they nearly always represent the best solution. This approach is reinforced, if not
driven, by the ever-improving performance of commercial digital to analogue conver-
sion (DAC) devices as measured by their spurious-free dynamic range (i.e. distortion)
and bandwidth. It is not unreasonable to state that the integrated DAC is the foremost
enabling technology for nearly all applications of digital waveform generation. Excep-
tions to this observation apply to purely digital signals, which exist as a discrete-time
sequence of binary numbers representing the signal waveform samples.

Electronic signals are often described as waveforms, indicating the time domain
image observed when the signal is measured with an oscilloscope. A signal produced
by an electronic signal generator may be defined as a periodic (or aperiodic), time-
varying voltage or current. The corresponding shape function can be described (or
approximated to some level of accuracy) by a causal mathematical function. This
definition suggests a generation method where the underlying mathematical function
which describes the waveform is effectively computed in real time by analogue or
digital means. The simplest and most widely used waveform is the sine wave, whose
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corresponding mathematical function may be computed by various well-known ana-
logue methods, digital recursive algorithms and so-called ‘direct digital synthesis’
(DDS). Classical non-sinusoidal, so-called ‘function” waveforms include the sawtooth,
triangle, square and pulse waveforms; each having a simple piecewise-linear discon-
tinuous mathematical description. These waveforms can also be generated using an
analogue computer model so as to have a waveshape which changes according to a
waveshape modulation parameter. For example, a pulse waveform whose duty-cycle
(i.e. the ratio of the waveform’s ‘on’ time to the total waveform period) changes
according to the value of some parameter, although the waveform’s frequency remains
constant. These waveforms suffice for many applications, but increasingly signals with
user-defined waveshape (or spectrum) are required in complex electronic systems as test
stimuli, excitation, control or modulation signals. We generalise signals with user-
defined waveshape as arbitrary waveforms and this book is primarily concerned with
investigating digital techniques for their generation. Further examples of arbitrary
waveform application include:

communication system carrier modulation;
transducer excitation signal generation;

medical and related imaging signal emulation;
signal emulation in complex test instrumentation;
radar return signal simulation;

electronic warfare adaptive signal generation;
control system diagnostic excitation;

multi-tone audio system testing;

computer music synthesis.

Many books have been written on signal generation by purely analogue means, such as
phase shift and state variable oscillators or analogue computer function generators.
Indeed, the first electronic signal generators, whether laboratory instrumentation or
bespoke, were completely analogue systems, and only much later augmented by various
forms of digital control. Over time, these techniques evolved to allow the generation
of so-called ‘function waveforms’ (e.g. triangle, sawtooth and pulse) in addition to
the ubiquitous sine wave. Indeed, some novel designs were capable of generating
rudimentary arbitrary waveforms by purely analogue means according to a piecewise-
linear shape specification. The HP3314A is one example of such a commercial labora-
tory signal generator. However, analogue techniques have always been beset by the
same fundamental problems — thermal instability, the need for periodic recalibration,
lack of control flexibility and limited waveform shape or corresponding spectrum
specification.

Before the emergence of DSP techniques, non-sinusoidal waveforms were generated
by analogue computation models such as the voltage controlled function generator.
Subsequently, digital control of key parameters was realised by using a digital to
analogue convertor (DAC) to translate from the digital to analogue domain, allowing
computer control of the signal generation process. Today, digital signal generation is
a cornerstone function in many modern analogue and DSP systems. Novel DSP
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techniques enable the generation of essentially any waveform shape, and provide
independent control of waveshape, frequency, phase offset and amplitude. These
techniques have evolved from the well-established methods of phase accumulation
and phase-amplitude mapping, which have hitherto been widely applied to the gener-
ation of sine wave signals through DDS. Recursive digital techniques have also
been applied to sine wave synthesis, but while having distinct advantages in some
applications, they lack the flexibility of the phase accumulation approach. They
are, however, well suited to many application areas due to their simplicity and low
computational cost.

This book investigates signal generation techniques based on phase accumulation and
phase—amplitude mapping. These ‘all-digital’ techniques enable the generation of
sinusoidal and arbitrary waveforms with user-programmable waveshape, frequency,
phase offset and amplitude. These powerful, yet flexible, techniques synthesise wave-
forms whose shape (and hence corresponding spectrum) can be defined according to a
time or frequency domain specification. Furthermore, with appropriate phase—amplitude
mapping, the synthesised waveshape can be varied according to a control parameter in
real time. Multiple waveform generators are easily synchronised, and with program-
mable phase offsets generate polyphase waveforms or quadrature IQ sine wave constel-
lations. The true utility of arbitrary waveform generation can be appreciated when we
consider that a waveform’s instantaneous amplitude may correspond to any parameter
in a digital or analogue system, whether as a test or control signal. For example, to
control the set point of a servo mechanism, the instantaneous amplitude or phase of a
carrier signal or the forcing function is applied to evaluate a control system’s response.

Motivation for this book has come in part from observations of the currently available
signal generation literature. Many excellent works have been written on the digital
generation of sinusoidal signals using DDS and related techniques. However, there is a
notable deficiency in the area of non-sinusoidal or arbitrary waveform generation using
purely digital techniques. Several published texts have dealt with waveform generation
in the field of computer music, and these can be considered as special cases of the
techniques described here. This book endeavours to address the gap by providing a
treatise on both sinusoidal and arbitrary waveform generation that incorporates tutorial
and hardware implementation descriptions at the functional block level. It is this latter
material which is intended to assist the engineer or system architect who has the task of
designing a bespoke waveform generator for a specific application. Synthesis algo-
rithms are presented as signal-flow block descriptions and are deliberately abstracted
from specific hardware or software implementation technologies (e.g. FPGA or DSP
code). However, generic throughput enhancement techniques such as arithmetic pipe-
lining and parallel memory architectures are discussed. Accordingly, it is assumed that
practitioners who are suitably ‘skilled in the art’ can implement and optimise these
signal flow descriptions in a hardware or software technology appropriate to their
application. It is reasonable to suggest that many of the suggested hardware architec-
tures, and the underlying synthesis techniques which they implement, are ‘solutions
looking for a problem’. Hopefully, this book will enable the reader to find these
techniques a good home, or at the very least, provide food for thought.
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We begin with a review of key definitions, historical context, classical analogue
waveform generation and the conceptual and mathematical foundations pertinent to
digitally generating electronic signals. The text then presents a detailed review of sine
wave synthesis algorithms beginning with recursion and finally progressing to sinus-
oidal direct digital synthesis (DDS). This lays the essential foundations required for an
understanding of phase accumulating arbitrary waveform generation — the focus of this
book. The figure below illustrates the flow and interconnection between chapters. To
supplement the written material and to assist the reader in ‘what happens if’ design
simulation, Mathcad models are available that compute qualitative performance metrics
for various configurations of the techniques presented. Mathcad models are also used to
generate the graphical plot figures used throughout the book to assist communication of
key ideas. These models are available for free download from www.cambridge.org/
symons, and from the author’s website www.petesymons.com/dwg.
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(Terms are grouped as used in the analysis.)
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waveform amplitude scaling factor.

post-DAC low-pass reconstruction filter —3 dB bandwidth.

number of amplitude sample bits.

waveform crest factor — ratio of waveform peak to RMS amplitude.
waveform duty-cycle — ratio of waveform ‘on’ time to period.
amplitude error sequence.

continuous-time variable.

waveform or signal frequency in hertz.

waveform period equivalent to the reciprocal of waveform frequency in
hertz.

fundamental frequency, typically of a harmonic series.

waveform generator output frequency.

continuous-time instantaneous frequency in hertz.

sampling frequency (or rate) in hertz.

sample period (or interval) equivalent to the reciprocal of sampling
frequency in hertz.

the oversampling ratio between the processing sample frequency f; and an
equivalent sample frequency corresponding to twice the bandwidth of the
post-DAC reconstruction filter B.

continuous-time waveform amplitude signal.

continuous complex amplitude spectrum.

waveform phase offset (typically in radians).

continuous-time instantaneous phase.

wrapped continuous-time instantaneous phase.

‘a modulo b° — the remainder after repeated subtraction of b from « until
(a—b) < b.

greatest common divisor between @ and b.

phase accumulator word length — 2* possible phase states.

phase accumulator integer component word length.

phase accumulator fraction component word length.

instantaneous discrete-time phase sequence.
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$dn)
$r(n)
a(n)
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H(n)

integer component of discrete-time instantaneous phase within a fractional
phase representation.

fraction component of discrete-time instantaneous phase within a fractional
phase representation.

rational fraction interpretation of ¢ (n).

phase increment.

discrete-time phase increment sequence.

number of sinusoidal DDS amplitude spectrum spurs.

discrete-time phase dither sequence.

kth element of the IDFT harmonic amplitude vector.

kth element of the IDFT harmonic phase offset vector.

kth element of an arbitrary waveform band-limiting amplitude response.
number of harmonics in a harmonic waveform specification.

number of samples in a particular computation.

ath element of a sinusoidal wavetable.

ath element of an arbitrary waveform wavetable.

wavetable length in samples.

Nth-order Lagrange interpolation polynomial.

number of bits in a wavetable page address — 27 wavetables.

wavetable page address sequence.

P-bit integer wavetable page index sequence component.

F'-bit fraction wavetable page index sequence component.
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