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Preface

This text is intended for junior and senior students in colleges or universities
who have the mathematical maturity that a beginning course or two in
calculus should impart. It is written at a somewhat lower level than A4
Survey of Modern Algebra by Garrett Birkhoff and Saunders Mac Lane and
still lower than Topics in Algebra by Israel Herstein and Modern Algebra by
Bartel van der Waerden. The influence of these three great books on this
text is evident.

In writing the book, I have been especially mindful that the student should
have a sense of involvement in the development of the subject. To this end,
in order to deal with a fundamental concept like a group, for instance, I do
not begin by listing a set of postulates but rather show how the idea comes up
as an abstraction of a set of properties common to two number systems. In
general, if a term is to be defined, I want to make sure that the student has
some prior acquaintance with ideas that make the concept meaningful and
useful.

I do not usually introduce a new term until I am ready to use it. For
instance, the idea of a normal subgroup is not defined when cosets are first
introduced nor even when the kernel of a homomorphism is first dealt with.
But as soon as it appears that we would be in trouble unless the left and right
cosets of the kernel are the same, then the concept of a normal subgroup is
forced upon us.
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viii Preface

From an algebraist’s point of view, the role of ideals in ring theory is
probably much more impressive than for unique decomposition into products
of prime ideals. But from a less sophisticated point of view, it is when we are
faced with the problem of unique decomposition that Dedekind’s idea shines
in all its brilliance. Similarly, Galois theory, although of fundamental im-
portance in algebra, can be shown to be important to a beginner by its
immediate usefulness in the solution of the classical problem of constructions
and solutions by radicals.

Special effort is made to keep the student informed about where we are
going and why. Tentative exploration often seems useful. Where a somewhat
special result is derived, the student is told that it is special and where we
shall use it later. This information will also guide those teachers who may
want to omit certain topics and need to know the price to be paid for such
omissions.

Much use is made of numerical examples to lead to ideas and to illustrate
concepts that have already been formulated. There are also a number of
places where a difficult proof is first shown in a numerical setting, then carried
out for a special case in the pattern of the general proof, before finally proving
the theorem completely. I feel no compulsion to state a theorem in its most
general form.

The exercises are a very important part of the text. Some are routine, to
help fix the abstract ideas in concrete situations. A number of proofs of
theorems are left to the student so that he can test his knowledge and feel
involved in the development of the results. Answers and partial answers are
given to selected exercises. Sometimes the answer is merely “yes” or ‘““no,”
to reassure the student that he is on the right track while leaving the reasons
to him. At other times an answer to part of an exercise is given in some
detail.

The first three chapters give the basic ideas of groups and fields. An
average class should be able to acquire most of this material in a one-semester
course that meets three times a week. I would, however, be disappointed not
to take some of the topics in the last two chapters, because it is there that the
results on groups and fields are really put to work. Furthermore, the last
chapter, especially, shows the intimate connection between groups and fields.
Students who have some prior knowledge of linear algebra should, in a
semester’s course, be able to get at least a taste of one of the last two chapters.

In Chapter I we lead up to the abstract idea of a group, then define it, and
devote the rest of the chapter to important examples of groups from various
parts of mathematics. The purpose is to show the student how ubiquitous the
properties of a group are, to help him to become familiar with a group in
many of its forms, and to acquire a backlog of experience and examples on
which the concepts of the next two chapters can be built. The first four
sections are closely interrelated. The fifth and sixth deal with functions and
transformations. They all lead up to the idea of a subgroup and what it takes
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to prove that a subset of a group is a group. Sections 8 and 9 are intimately
related. In Section 10 we not only have a rudimentary example of an ideal but
derive a result that will be immediately useful. Even the little group from
logic is not just a curiosity but concerns itself with the structure of proof.
The idea of an abstract group is a simple one (I have taught it to freshmen)
but to really appreciate it requires experience; providing this experience is an
important aim of this chapter.

Chapter 11 begins with the idea of an isomorphism. Logically, it might seem
more efficient to introduce first the concept of a homomorphism and then
specialize it to an isomorphism. But the latter is a simpler concept and much
more readily applicable to examples at hand. Cyclic groups are dealt with in
detail but only after the student has had experience with more general groups.
Since normal subgroups and homomorphisms go together, they are intro-
duced in juxtaposition.

Chapter I11 begins with the idea of a field because, in my opinion, this is a
simpler concept for the beginning student than that of an integral domain or
a ring. Another reason for postponing the idea of a ring is that the most
accessible example of a ring that is not an integral domain is the set of
matrices of some order; and a student without linear algebra in his back-
ground might not feel at home with such an illustration. The section on
derivatives and separability is introduced, first, because there may be some
interest in seeing how a derivative can be defined for polynomials without the
idea of a limit, and, second, this section is needed in parts of Chapter VI. It
should be pointed out that we treat algebraic extensions only partially in
Section 14 because we lack some ideas of a vector space. When a class is
familiar with vector spaces, one could give extensions more adequate treat-
ment by introducing at this stage part of Section 2 of Chapter VI.

Chapter 1V is a service chapter for those students without any background
in linear algebra. The point is that certain topics in linear algebra are needed
in the last two chapters, and it would seem awkward to have to refer students
to other texts for these results. The chapter begins with the basic idea of a
vector space and linear dependence and independence. These are the only
parts of Chapter 1V that are needed in Chapter VI. Matrices and determi-
nants are used crucially in Section 6 of Chapter V. Otherwise, except for the
use of matrices as examples of rings, we do not need them in the rest of the
book. Thus the choice of material in this chapter depends on the training of
the class and what additional topics in the book they will study.

Chapter V justifies the concept of an ideal by posing the problem of unique
decomposition and then solving it. The latter involves, as is there noted, two
rather difficult theorems about algebraic fields, which neither the student nor
the teacher may want to tackle. In such a case I would prefer, myself, to
assume these two theorems and then proceed to solve the problem at hand,
since, as I noted earlier, I think the student would be much more impressed
with the use of ideals in this connection than for homomorphisms of rings.
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But it is true that Section 8 through Theorem 8.7 and Section 9 could be
taken up without much of the rest of the chapter.

Chapter VI uses the first three sections of Chapter V but is otherwise
independent of its predecessor. Hence a class could omit all but those three
sections before proceeding to Chapter VI. The latter is concerned with the
related problems of constructions and solutions by radicals. It develops as
needed the tool of Galois theory to solve these problems. This chapter ties
together most of what has previously been covered in the book: groups, fields,
and algebraic extensions of fields.

My indebtedness to the four authors mentioned in the first paragraph of
this preface is very great. I especially admire the exploratory point of view
from which Herstein wrote his book, and this has influenced my approach to
some topics. I should also acknowledge that I have adopted with some en-
thusiasm the practice of George Simmons in his book on differential equations
and have given brief biographical sketches of those mathematicians whose
names are linked with the subject and whose ideas underlie the basic theory.

I should like to record my special appreciation of the late Carl B. Allen-
doerfer, who in many ways encouraged the writing of this book and whose
careful and perceptive comments were a crucial influence in its development. |
am also grateful to Charles Brase, who, in reading the semifinal version of the
manuscript, gave many helpful suggestions. Furthermore, 1 want to acknowl-
edge the contributions of Miss Kanda Kunze of the University of Arizona and
Mrs. Mae Jean Ruehlman of the University of Colorado, who typed the
manuscript at various stages. Thanks could not be complete without in-
cluding the Macmillan staff in their meticulous attention to many details of
production.

Boulder, Colorado BurTON W. JONES
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Definition and Examples
of Groups

1. Introduction

In the process of studying any subject, one should stop from time to time to
correlate what he has learned. Such coordination is especially useful in
mathematics, where the body of knowledge increases rapidly and emphasis
shifts. Without such periodic reassessment, what needs to be learned can
quickly become unmanageable by sheer volume alone. To achieve such
correlation, we shall in this book deal with some fundamental mathematical
structures—sets of objects from various parts of the subject that have certain
properties in common. When we look at these common properties, we may
see relationships not previously perceived. Such a look will increase our
insight into known mathematics and will lead into realms that are new to us,
although they have important properties in common with the old.

The subject matter of this book is thought of as algebra, but we shall see
that it has much in common with parts of analysis and geometry as well. In
fact, it is the interplay of various parts of mathematics that lends importance
to much of the material presented.

We start with the technical idea of a group because it can be described
briefly and has a wealth of application. To work toward this fundamental
concept, we first point out a list of properties common to two sets of numbers,
and from this abstract the definition of ““ group.” In the rest of the chapter we

1



2 Definition and Examples of Groups [Ch. |

explore various examples from different parts of mathematics not only to
show how being a group can serve as a unifying concept, but also to provide a
source for the development of properties of groups that are discussed in later
chapters. We postpone until Chapter II consideration of most of the general
properties of groups.

2. Definition of a Group

First, let us consider certain properties of two sets of numbers: Z, the set of
all integers, and R*, the set of all nonzero real numbers (R denotes the real
numbers, including zero). To emphasize the relationships, we list the proper-
ties in parallel columns.

Multiplication of nonzero real

Addition of integers, Z numbers R*
1. Closure
If b and ¢ are in Z, then b + ¢ If b and ¢ are in R¥, then b - ¢
and ¢ + b are in Z. and ¢+ b are in R¥,
2. Associativity
For all a, b, and ¢ in Z, we For all a, b, and ¢ in R*, we
have(a + b) + c=a + (b + ©). have (a*b)+¢c =a-+(b-c).
3. Existence of an identity
There is a number 0 in Z such There is a number 1 in R* such
that 0 + a = a + 0 = a for that 1 a = a1 = a for all
all ¢ in Z. a in R*.
4. Existence of an inverse
For each a in Z, there is a For each a in R*, there is a
number (—a) in Z such that number ¢! such that
a+ (—a)=(—a)+a=0. ala=aa'=1 (We

also write 1/a for a=1.)

To be sure, these are not the only properties common to addition of
integers and multiplication of nonzero real numbers. But we select these
because there is a striking parallelism between these two sets of four properties
and because we shall see later in this chapter that many other examples of sets
also have these properties.

Notice that for multiplication of integers, property 4 fails to hold, since,
for example, there is no integer x such that 3x = 1. On the other hand, the
four properties of addition hold if Z is replaced by Q. the set of rational
numbers, R, the set of real numbers, or C, the set of complex numbers.
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Furthermore, the properties of the right-hand column hold if R* is replaced
by Q* or C*, the respective sets of Q and C with zero excluded.

It is also true that the four properties of addition hold if Z is replaced by
Z[x], the set of polynomials f(x) in x with coefficients in Z. In fact, the
coefficients of the polynomials in x could be rational, real, or complex and the
properties listed for addition would still hold.

In order to gradually develop a concept that includes both sets with
addition and multiplication, respectively, let us look more carefully at the
two sets above. Each integer is an element of the set Z and each nonzero real
number an element of R*. So we start with a set. Then there is a means of
combining two elements of the set to get a third, a process we call an opera-
tion. For the first set above, the operation is addition and, for the second,
multiplication. If we denote the operation by o, we can write

s °S, s S”.,

where s, s’, and s” are in the set S. For addition of integers, < is +, and for
multiplication of real numbers it is a raised dot -+, the symbol for multiplica-
tion. Property 2 affirms that the operation is associative.

You may well wonder why we did not include in our list the commutative
properties: @ + b = b + a and a*b = b+-a. We have, in fact, purposely
avoided this requirement in order to enlarge the scope of the concept of a
group. So if the result of the operation is to be allowed to depend on the
order, we must consider not just the pair of elements but an ordered pair, that
is, a pair in which the order makes a difference. Thus we have led up to the
following formal definition of a binary operation (*‘binary™ because it
combines two elements).

Definition. Given a set S, we call o a binary operation on S if it assigns to
each ordered pair of elements s and s" of S a unique element s" of S.

This operation can be written in at least two ways:

"

sos' =5 or (s, 8) 5 8",

where s, s, and s” are elements of S.
Since the idea of a binary operation includes closure, we need not mention
this property in the formal definition of a group, which follows.

Definition. Given a nonempty set of elements S and a binary operation o on S,
then we call S a group *“under™ the operation < if the following properties
hold:

1. The binary operation is associative; that is, for every a, b, and ¢ in S,

ao(boc)=(aob)oc.
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2. There is an element e of S such that eca = a- e = a for every element
a of S. Such an element e is called an identity element. (We shall prove
that it is unique.)

3. To each element b of S there corresponds an element b of S such that
bob =bob = e, where e is the identity element. Such an element is
called an inverse of b. (It can be proved that b is uniquely determined
by b.)

If you let S be Z and - be +, you will see that the integers form a group
under addition, whereas if S is R* and the operation is multiplication, it
follows that the nonzero real numbers form a group under multiplication.
Similarly, the sets Q, R, and C (rational, real, and complex numbers), as well
as Z[x], form a group under addition; Q* and C* form a group under
multiplication.

There are five other properties common to Z under addition and R* under
multiplication, which we list as follows, using the terminology that we have
used for the definition of a group. '

4. The identity of a group is unique; that is, there is only one identity
element in a group.

5. The inverse of any element of a group is unique; that is, each element b
has exactly one inverse.

6. If a and b are any elements of a group, then there are unique elements x
and y of the group for which@ex = band yoa = b.

7. The cancellation properties hold: (a) if ac b = a ¢, then b = ¢; (b) if
boa=coa,thenb = c.

8. The inverse of ac b is b o a.

First, let us see what these mean for addition of integers. Property 4
affirms that O is the only integer z for which z + @ = a + z = a for all
integers a, and property 5 affirms that every integer has only one negative.
Both of these are very obvious. Slightly less obvious is property 6, which
maintains that @ + x = band y + a = b are solvable for x and y, no matter
what integers @ and b are. Property 7 states thata + b =a + corb + a =
¢ + a implies that b = ¢. Property 8 affirms that the inverse of a + b is
(—b) + (—a). You should follow through these same properties for R* under
multiplication.

Now, these five properties are different from the first three, in that they can
be deduced from the first three. This means that whenever we have verified
that a system is a group, these properties also hold as extra dividends. So
now we proceed to show how property 4 and half of property 6 follow from
the group properties, leaving the rest of the proofs as exercises.

To prove property 4, suppose that there are two identity elements e and e’
of a group. Then e o ¢’ = ¢’ since e is an identity, and e - ¢’ = e since ¢’ is an
identity. Hence e = ¢'.



