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Foreword

The book content reflects the (good) taste of the author for solid
mathematical concepts and results that have exciting practical applications. It
is an excellent textbook that should appeal to students and instructors for its

very clear presentation of both classical and more recent concepts in graph
theory.

Vincent BLONDEL
Professor of Applied Mathematics, University of Louvain

September 2016



Introduction

This book is a result of lecture notes from a graph theory course taught at
the University of Liege since 2005. Through the years, this course evolved
and lectures were given at different levels ranging from second-year
undergraduates in mathematics to students in computer science entering
master’s studies. It was therefore quite challenging to find a suitable title for
this book.

Advanced or not so advanced material?

I hope that the reader will not feel cheated by the title (which is always
tricky to choose). In some aspects, the material is rather elementary: we will
start from scratch and present basic results on graphs such as connectedness
or Eulerian graphs. In the second part of the book, we will analyze in great
detail the strongly connected components of a digraph and make use of
Perron—Frobenius theory and formal power series to estimate asymptotics on
the number of walks of a given length between two vertices. Topics with an
algebraic or a combinatorial flavor such as Ramsey numbers, introduction to
Robertson—Seymour theorem or PageRank can be considered as more
advanced.

In the history of mathematics, we often mention the seven bridges of
Kénigsberg problem as the very first problem in graph theory. It was studied
by the famous mathematician L. Euler in 1736. It took two centuries to
develop and build a complete theory from a few scattered results. Probably
the first book on graphs is Theorie der endlichen und unendlichen Graphen
[KON 90] written by the Hungarian mathematician D. Konig in 1936, a
student of J. Kiirschdk and H. Minkowski. In the middle of the 20th Century,
graph theory matured into a well-defined branch of discrete mathematics and
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combinatorics. We observe many mathematicians turning their attention to
graph theory with books by C. Berge, N. Biggs, P. Erdds, C. Kuratowski,
W. T. Tutte, K. Wagner, etc. We have seen an important growth during the
past decades in combinatorics because of the particular interactions existing
with optimization, randomized algorithms, dynamical programming, ergodic
or number theory, theoretical computer science, computational geometry,
molecular biology, etc. On MathSciNet, if you look for research papers with a
Primary Mathematics Subject Classification equal to 05C (which stands for
graph theory and is divided into 38 subfields ranging from planar graphs to
connectivity, random walks or hypergraphs), then we find for the period
2011-2015 between 3, 300 and 3, 700 papers published every single year.

In less than a century, many scientists and entrepreneurs have seen the
importance of graph theory in real-life applications. In a recent issue of Wired
magazine (March 2014), we can read an article entitled Is graph theory a key
to understanding big data? by R. Marsten. Let us quote his conclusion: “The
data that we have today, and often the ways we look at data, are already
steeped in the theory of graphs. In the future, our ability to understand data
with graphs will take us beyond searching for an answer. Creating and
analyzing graphs will bring us to answers automatically”. Later, in the same
magazine (May 2014), E. Eifrem wrote: “We're all well aware of how
Facebook and Twitter have used the social graph to dominate their markets,
and how Facebook and Google are now using their Graph Search and
Knowledge Graph, respectively, to gear up for the next wave of
hyper-accurate and hyper-personal recommendations, but graphs are
becoming very widely deployed in a host of other industries”.

This book reflects the tastes of the author but also includes some important
applications such as Google’s PageRank. It is only assumed that the reader has
a working knowledge of linear algebra. Nevertheless, all the definitions and
important results are given for the sake of completeness. The aim of the book is
to provide the reader with the necessary theoretical background to tackle new
problems or to easily understand new concepts in graph theory. Algorithms

and complexity theory occupy a very small portion of the book (mostly in the
first chapters).

This book, others and inspiration

Many other books on graphs do exist and the reader should not limit
himself or herself to a single source. The Internet is also a formidable
resource. Even if we have to be cautious when looking for information on the
Web, Wikipedia contains a wealth of relevant information (but keep a critical
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eye). The present book starts with some unavoidable general material, then
moves on to some particular topics with a combinatorial flavor. Powers of the
adjacency matrix and Perron theory have a predominant role. The reader
could probably start with this book and then move to [BRU 11] as a good
companion to get a deeper knowledge of the links between linear algebra and
graphs. See also [BAP 14] or the classical [GOD 01] in algebraic graph
theory. Similarly, a comprehensive presentation of PageRank techniques can
be found in [LAN06]. The authors of that book, A. Langville and
C. D. Meyer, also specialized in ranking techniques (see [LAN 12]). Another
general reference discussing partially the same topics as here — and 1 do hope,
with the same philosophy — is by R. Diestel where much more material and a
particular emphasis on infinite graphs may be found. The present book is
smaller and is thus well suited for readers who do not want to spend too much
time on a specialized topic.

Having given a graph theory course for more than 10 years, I'm probably
unconsciously tempted to take ownership of the proofs that I found somewhere
else. It is no easy task to cite and give credits to all the sources that inspired me
in this process. Let me mention [BIG 93] for algebraic aspects and chromatic
polynomial, [TUT 01] for its first chapters and [ORE 90] for planar graphs
and his proof of the 5-color theorem. I should also mention [BOL 98] (with
an impressive collection of exercises) and [BER 89]. Finally, I remember that
projects available on the Web and run by D. Arnold (College of Redwoods)
were inspiring.

Practical organization

For a one-semester course, here is the time I usually devote to selected
topics with 15 lectures of 90 min. Moreover, sessions for exercises take the
same amount of time. The book contains extra material and more than 115
exercises:

— digraphs, paths, connected components (sections 1.1 and 1.2);

— Eulerian graphs, distance and shortest path (sections 1.3 and 1.5);
— introduction to Hamiltonicity, applications (sections 1.4 and 1.6);
— trees (section 4.1);

— homomorphisms, group of automorphisms (sections 7.1 and 7.2);
— Hamiltonian graphs (sections 3.1-3.4);

— topological sort (Chapter 4);
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— adjacency matrix, counting walks (sections 8.2 and 8.3);

— primitivity, Perron’s theorem and asymptotics (sections 9.1 and 9.4);
— irreducibility and asymptotics (sections 9.2 and 9.4);

— applications of Perron—Frobenius theory (section 9.3);

— Google’s PageRank (Chapter 10);

— planar graphs and Euler’s formula (sections 6.1-6.3);

— colorings, the five-color theorem (section 6.5);

— Ramsey numbers (section 7.4).

Definitions are emphasized and the most important ones are written in bold
face, so that definitions of recurrent notions can be found more easily. Labels
of bibliographic entries are based on the first three letters of the last name of
the first author and then the year of publication. In the bibliography, entries are
sorted in alphabetical order using these labels.

I address special thanks to Emilie Charlier, Aline Parreau and Manon
Stipulanti for their great feedback leading to some major improvements in
this book. Of course, Valérie Berthé always plays a special role. I am very
pleased to blame her (indeed, this adventure produced some pressure from
time to time) for what this project finally looks like. She is always supportive
and enthusiastic. [ also thanks several colleagues: Benoit Donnet, Eric
Duchéne, Fabien Durand, Narad Rampersad, Eric Rowland and Elise
Vandomme for the valuable time they spent reading drafts of parts of this
book. I will not forget Laurent Waxweiler who gave and prepared the very
first exercise classes for my course. I also thank my many students along the
years. Their questions, queries and enthusiasm allowed me to improve, over
the time, the overall presentation and sequencing of this book.

Michel Ri1GO
September, 2016
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A First Encounter with Graphs

1.1. A few definitions

There is not much fun in listing basic definitions about graphs (this is
quite a bad introduction to start with!) but if we seek a rigorous presentation
of results and proofs, then we cannot avoid giving accurate definitions of the
objects that we will manipulate, but hopefully nice examples will also come
quickly. In this book, we assume that the reader has a basic (or, at least a
naive) knowledge of sets and operations on them.

As usual in mathematics, a pair (u,v) made up of two elements is
implicitly assumed to be ordered: it has a first component u and a second
component v. It has to be compared with a set with two elements « and v
denoted by {u,v}. A set does not carry any ordering information about its
elements. In particular, if u # v, then we can build two pairs but a single set:
(u,v) # (v,u) and {u,v} = {v,u}. If S is a finite set, we will write #5S 1o
denote the number of elements in S, i.e. the cardinality of S. We can also find
the notation |S| but we will use it to denote lengths of paths.

1.1.1. Directed graphs

DEFINITION 1.1.— Let V' be an arbitrary set. A directed graph, or digraph, is
a pair G = (V, E) where E is a subset of the Cartesian product V- x V, i.e.
E is a set of pairs of elements in V. The elements of V' are the vertices of G —
some authors also use the term nodes — and the elements of E are the edges,
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also called oriented edges or arcs!, of G. An edge of the form (v, v) is a loop
on v. Another way to express that E is a subset of V' x V is to say that E is
a binary relation over V.. If either (u,v) or (v,u) belongs to E, the vertices u
and v are adjacent. If neither (u,v) nor (v,u) belong to E, then u and v are
independent. Given a digraph G, the set of vertices (respectively of edges) of
G is denoted by V (G) (respectively E(G)).

The vast majority of the graphs that we will encounter are finite meaning
that the set V' of vertices is finite, and thus E contains at most (#V)? edges.

REMARK 1.2.— [t is common to speak of the order of G for #(V (G)) and the
size of G for #(E(G)).

There are a few examples of infinite graphs in this book: see
examples 1.47 and 4.11 (in formal language theory) and section 7.2 about
colorings. Infinite graphs usually require more sophisticated arguments such
as the axiom of choice. Implementation of infinite graphs in a computer could
be tricky or impossible, From a practical point of view, particular instances of
infinite graphs with a countable number of vertices and edges can be
implemented. Think about a periodic graph that permits one to store only a
finite amount of information to be repeated or a relation among vertices that

can be computed and implemented as a function (see exercise 6 and
example 1.5).

A digraph G = (V| E) is said to be simple if E is a subset of (V' x V) \
{(v,v) | v € V}. In that case, the relation E is irreflexive. Otherwise stated,
loops are not allowed.

The elements belonging to a set are pairwise distinct: there is no repeated
element. What we need to define a directed multigraph, i.e. a digraph where
multiple edges between two vertices are allowed, is to permit repetitions of an
element belonging to a set. In set theory, we can introduce the notion of a
multiset. First, we restrict ourselves to multisets with finite integer
multiplicities. A multiset A is a pair (S,m) where S is a set, in the
“classical™ sense, and m : § — N>y is a multiplicity function that specifies
the number m(s) of occurrences of s € S in the multiset. As an example, the
multiset denoted by {u,u,v,v,v,w} is built from S = {u,v,w} and

1 1f we really have to distinguish the directed graphs from the undirected graphs that we
will soon introduce, then we could restrict the use of the word “edge™ to the undirected
case and use the word “arc” solely in the directed case. But usually the context permits
one o avoid any misunderstanding.
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m(u) = 2, m(v) = 3, m(w) = 1. If the occurrences of an element have to be
distinguished?, we can index elements s € S by 51,...,5,,(5)- To continue
the example, {u;, w2, v, v2, v3, w1} denotes the same multiset as above. If S
is a finite set, then the cardinality of the multiset M = (S, m) with finite
multiplicities is

#M = Z m(s).

seS

Observe that a multiset (S, m) where mn(s) = 1, forall s € S, is simply a
set. Equivalently, we could have defined the multiplicity function to map every
element s of S to a finite subset of N: the set of indices used for s.

Second, we could consider countable multiplicities3. In that case, an
element of a multiset can be repeated infinitely many times and the
multiplicity function maps every element to a subset of N (which is the set of
indices used for that element). As an example, a vertex u could be repeated
infinitely many times with prime indices: {us, us, us, 7, u11,...}. Thus, the
multiplicity function maps u to the set of prime numbers.

We now introduce a directed multigraph as a pair G = (V, E') where V
is a set of vertices and E is a multiset of edges built from a subset of V' x V.
For a directed multigraph G = (V, E), the fact that V' is finite does not imply
that E is also finite. Indeed, we could have infinitely many edges between two

vertices. Thus, a directed multigraph is finite if both the set V' and the multiset
E are finite.

REMARK 1.3.— It is common (and quite visual) to represent the vertices of a
digraph by points in the plane (but we can also draw graphs on other surfaces
like on a torus). Edges of the form (u,v) are represented by arrows going from
u to v. We say that u (resp. v) is the origin (respectively, destination) of the
edge. Actually any oriented arc of a curve can be used to join two vertices, not
only straight vectors. Since positions of the vertices and arcs of curves joining
the vertices can be freely chosen, there are usually infinitely many ways to
represent a given graph. There is no reason that two edges that are intersecting
in one representation are also intersecting in another representation of the
same graph. We will rediscuss these notions with great care in section 6.1.

2 For instance, to define a walk using different edges between two vertices.

3 Recall that a set is countable if it is in one-to-one correspondence with a subset of N.
Of course, from a mathematical point of view, further generalizations of multiplicity
function and multisets can be considered; see section 1.7 for comments and pointers.
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In Figure 1.1, we have depicted representations of a simple digraph,
digraph and directed multigraph.

| (B
o—>>9

[_“‘\ N TR
R VA N 7/ NP

Figure 1.1. From left to right: a simple digraph,
a digraph and a directed multigraph

A digraph G can be stored as an adjacency list: with each vertex u is
associated the list of vertices v such that (u, v) € E(G). For the central digraph
in Figure 1.1, the corresponding adjacency list is given in Table 1.1. A similar
data structure can be used for directed multigraphs.

1[2
212 3 s
3]s
411 4 s
513 4

Table 1.1. An adjacency list

EXAMPLE 1.4 (Tournament)— A simple digraph G = (V, E) where, for all
pairs of distinct vertices u and v, either (u,v) or (v,u) belongs to E (but
exactly one of these two edges belongs to E) is said to be a tournament. Indeed,
it corresponds to an all-play-all tournament: each player plays against every
other player and there are no ties. If u wins the confrontation against v, then
we take the edge (v,u). See Figure 1.2.

EXAMPLE 1.5.— For an example of infinite simple digraph, take N~ as set of
vertices and a pair (m,n) of integers greater than 1 is an edge if and only if
m divides n. The first few vertices and some edges of this digraph are depicted
in Figure 1.3. Note that the relation E is transitive. If (m,n) and (n,p) belong
to E, then (m, p) belongs to E.
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Figure 1.2. A tournament among four players or teams

Figure 1.3. A divisibility relation (first few vertices only)

EXAMPLE 1.6.— We consider the digraph made up of Webpages and there is
an edge from a page p to a page q if there is a link on p referencing q. This
digraph is finite but contains several billions of vertices. Independently of the
content of the pages, here we are interested in the links that one user can follow
by browsing through pages. Based on Perron’s theorem (theorem 9.2), we will
discuss the basis of the Google’s PageRank algorithm in Chapter 10.

Figure 1.4. Some links and Webpages
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Similarly to pages referencing other pages, we can also think about
scientific papers that are citing other papers. In that case, we get a digraph
where it is meaningful to try to identify relevant or influential papers. Which
are the papers that are cited by many other papers, which are the “best”
Jjournals? The website http://www.eigenfactor.org/ uses a similar strategy to
rank journals instead of Webpages [BER 07, WES 10].

EXAMPLE 1.7~ The digraph that we may associate with Twitter is another
example about social networks. There is an edge from a user account wu to a
user account v, if u is following the tweets of v. Therefore, all the tweets posted
by v are displayed in the follower’s timeline. Such a digraph captures who is
following who. For instance, see [YAM 10] for an example of a User-Tweet
digraph.

REMARK 1.8.— The reader may wonder about this triple definition of
digraphs: simple digraphs, digraphs and directed multigraphs. Why should
we take into account the case of simple or multiple digraphs? The answer is a
pragmatic one. We choose the model that best fits the situation that we are
considering. If we are interested in finding a shortest path between two
vertices, it is meaningless to consider loops or multiple edges; going through
a loop just makes the path longer. We just want to know if the two vertices are
connected or not. In such a case, we will deal with simple digraphs. On the
other hand, assume that we have to model the fact that between two cities,
there is a road, a river but also a railway. Here multigraphs are useful to take
this fact into account. Note that simple digraphs are special cases of digraphs
that are themselves special cases of directed multigraphs. We reach same
conclusions when we have to choose between digraphs and the unoriented
graphs that we will soon introduce to model a particular situation.

DEFINITION 1.9~ In a directed graph G = (V, E), we may associate two
sets with every vertex v, respectively, the sets of outgoing edges and incoming
edges:

wr(@) :={(v,w) e E|weV}, w (v):i={(u,v)€eE|uecV}

These definitions are extended to directed multigraphs and in that case, the
corresponding sets are multisets. If, for all vertices v, the multisets w™ (v) and
w™(v) are finite, then we say that G is of finite degree. The successors
(respectively, predecessors) of a vertex v are the vertices w (respectively, u)
such that (v, w) (respectively, (u,v)) belongs to w™ (v) (respectively, w™ (v)).
The set of successors (respectively, predecessors) of v is denoted by succ(v)
(respectively. pred(v)). Note that there is a loop on v if and only if



