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Preface

This book is intended to act as a guide for students and practicing engineers for
fatigue design of dynamically loaded marine structures. Fatigue of structures is a
broad and complex area that requires more background than can be included in
design standards. Many papers on fatigue of structures are published each year, and
different design approaches have also been issued. However, due to the nature of
the fatigue phenomena and scatter in test results, it may be difficult for engineers to
obtain a good overview of what is found to be a good recommended fatigue assess-
ment methodology.

The purpose of this book is not to give a complete overview of different design
approaches, but rather to provide the reader with a sound background for the most
common recommendations in design standards for fatigue assessment of marine
structures. The content of this book is colored by the experiences by the author,
and it may be relevant to consider this textbook in relation to the Standards with
which the author has been most heavily involved, including the Recommended Prac-
tice DNVGL-RP-C203 Fatigue Design of Offshore Structures and DNV-RP-C206
Fatigue Methodology of Offshore Ships. However, similar content can also be found
in a number of other design standards, such as: ISO 19902 (2007), API RP2A (2014),
AWS (2010),BS 7608 (2014), Eurocode 3 (EN 1993-1-9,2009), and ITW (Hobbacher,
2009). Thus, this book might best be considered as providing background for fatigue
assessment of welded structures on a broad basis.

Based on the author’s main background experience, a number of DNVGL stan-
dards are referenced. As these documents can be downloaded for free from the Inter-
net, they are also useful reference documents for students studying fatigue of marine
structures.

Much of this book is related to fatigue capacity of steel structures. The book
may be seen as complementary to the Naess and Moan’s book, Stochastic Dynamics
of Marine Structures. Thus mainly the fatigue capacity of marine structures is con-
sidered in this book. The dynamic loading may be due to different sources such as
waves, wind, rotors on wind turbines, dynamic response, vortex-induced vibrations,
pile driving, and loading and unloading of content. Although this book will be easier
toread and understand if the reader has a sound background in structural mechanics,
the derivation of equations and the examples are presented in sufficient detail that it
should be also possible to understand for engineers whose background is not rooted
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in structural engineering. A number of relevant examples are also included for the
purpose of education of students.

A number of other test books on fatigue are recommended for a more basic
learning about fatigue. Rather than repeating content that has already been well pre-
sented elsewhere, the author concentrates on engineering practice based on his own
experiences in this book. Other textbooks on fatigue include (listed in alphabeti-
cal order by the author): Almar-Naess (1985), Collins (1993), Dowling (1998), Fis-
cher (1984), Forrest (1962). Gurney (1979). Gurney (2006), Haibach (2006), Lassen
and Recho (2006), Macdonald (2011), Maddox (1991), Marshall (1992), Nussbaumer
et al. (2011), Pilkey (1997), Radaj et al. (2006), Radaj and Vormwald (2013), Schijve
(2009), Sines and Waisman (1959), Sors (1971), Stephens et al. (2001), and Warde-
nier (1982). Books related to fatigue based on fracture mechanics include: Anderson
(2005), Broek (1986), Carlsson (1976), Hellan (1984), Knott (1973), Liebowitz (1968),
and Taylor (2007).

Although our understanding of the fatigue phenomena has improved over time,
the assessment procedures are still strongly related to laboratory fatigue test data.
Therefore,some of the author’s experiences related to laboratory testing are included
in the first section of this book. Careful review of these sections will enable the reader
to obtain a better understanding of the remaining part of the book.

Most of the terminology used in this book is defined at first use, and the index
may be useful in this respect. Some expressions are used more frequently than oth-
ers; one example is the term “fatigue strength.” which can be defined as magni-
tude of stress range leading to a particular fatigue life. Fatigue life or the number
of cycles to a failure under the action of a constant amplitude stress history may
also be denoted “fatigue endurance.” A “fatigue strength curve™ or “S-N curve™ is
defined as the quantitative relationship between the stress range (S) and the num-
ber of stress cycles to fatigue failure (N). used for fatigue assessment of a particular
category of structural detail. Thus, the expression “fatigue strength™ needs to be asso-
ciated with some number of cycles to be fully meaningful. The same comment may
be made with respect to expressions as “fatigue resistance™ used in some design stan-
dards and “fatigue capacity” used by designers to characterize the resistance against
fatigue failure in structures. Thus also these expressions may be interpreted as resis-
tance or capacity in relation to an S-N curve. Both the term “fatigue strength™ and
“fatigue capacity” are used in this book to characterize resistance against fatigue.
Normally the word “capacity” may be considered to be more general than “strength™
and include more influencing parameters when comparing this also with other fail-
ure modes than fatigue for structures. For example, the wording “fatigue strength™
is used to describe the resistance to fatigue failure in a single fatigue test or of, for
example, a single bolt, and “fatigue capacity”is used to describe the fatigue resistance
of a bolted connection where the fatigue capacity is dependent on more parameters
such as surface conditions of plates, friction coefficient, and pretension of the bolts.
In some literature the S-N curves are also denoted as Wohler curves.

See Sections 1.4 and 4.11.1 for definition of characteristic and design S-N curves.
When the accumulated number of cycles is divided by a reference value, such as the
characteristic number of cycles to failure as derived from an S-N curve, the wording
“fatigue damage” is used. Fatigue damage accumulates with time when a structure
is subjected to dynamic loading. Fatigue endurance is similar to fatigue life, which



Preface

may be measured often in terms of years. Fatigue endurance can be observed during
laboratory fatigue tests or can be calculated based on a defined design procedure. The
calculated values normally differ from fatigue test data or observed values; therefore,
the term “calculated” is often inserted in front of fatigue life in order to make this
difference more clear.

In design standards for offshore structures the notation SCF is used for a lin-
ear elastic stress concentration factor (see Section 3.2.1 and Chapter 8). In design
standards for sailing ships K is used as notation for the same stress concentration
factor; see, for example, the IACS common rules from 2013. In this book SCF is
used as notation for stress concentration factor, and it should not be mixed with the
stress intensity factor used in fracture mechanics analysis that is denoted by K — see
Section 16.2.

Some items are presented in more than one section of the book. However, where
this occurs, cross-referencing has been used to improve readability.
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