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List of Notations

A ELERCEN ST

set of integers

ring of rational integers

real number field

real quaternion field (Appendix 1 to Chapter 1)

dual number ring (see section 2.1.1)

dual number such that €2 = 0 (see sections 1.5.6 and 2.1.1)

differential of the map f (see section 1.1)

tangent map of the map f (see section 1.1)

symbol of the composition of maps

Euclidean affine space (generally of dimension 3)

translation in £ by the vector u € E (see section 1.5.3)

vector space (very often the Euclidean of dimension 3 over R)

vector product (or “cross product”) in the oriented dimension 3
Euclidean vector space

mapping x — a A X in the oriented dimension 3 Euclidean vector space
Lie bracket in a Lie algebra

mixed product in the dimension 3 Euclidean vector space

dual mixed product in the A-module I (see section 2.1.4)

dual mixed product in the A-module I (see section 2.1.4)

algebra of the linear operators in the vector space K (see section 1.2.1)
group of the regular linear operators the vector space E (see
section 1.2.1)

Orthogonal group of the Euclidean vector space E (see section 1.2)
Special othogonal group of the Euclidean vector space E (see
section 1.2)

group of the normalized quaternions

group of affine transformations of £
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Displacement group of £

Lie algebra of I (of the skewsymmetric vectorfields on & see
section 1.5.4)

Klein form of D (see section 1.5.5)

set of vector fields € ©® — T vanishing on their axe (see section 1.5.5)
set of vector fields € ©® — T vanishing at a € £ (see section 1.5.5)
ideal of D of the constant vector fields on & (see section 1.5.4).

axis of X € © (see section 1.5.4)

pitch of X € D (see section 1.5.4)

Lie group (defined according to the context)

tangent space of G

tangent vector space of G at g

Lie algebra of the Lie group G

adjoint representation of a Lie group (defined according to the context,
see sections 1.2.2, 1.5.1,1.5.4)

equivalent to AdA in the Euclidean displacement group (see
section 1.5.2)

adjoint representation of a Lie algebra (defined according to the context,
see section 1.2.2)

Left and right Maurer-Cartan forms on a Lie group (generally SO(E) or
ID see sections 1.2.2 or 1.5.1)



Introduction

The first significant occurrence of Lie groups in classical mechanics is due to V.
Arnold in the paper [ARN 66] (1966) who studies Eulers’s equations for the dynamics
of a rigid body or of a perfect fluid and points out that, up to the choice of the group,
their structure is similar. Today, articles of mechanics and physics referring to Lie
groups, especially in Hamiltonian dynamics or in control theory are various and very
numerous. However they often focus on theoretical properties, such as integrability or
reduction with the help of first integrals, of rather particular mechanical systems which
are of little interest for the common engineer who encounters complicated mechanical
systems and wishes to simulate their behavior with a computer. In other words, the
presentation of the dynamics of a single rigid body in the light of Lie group theory
is more or less classical but limited in scope so that extensions to large mechanical
systems, falling in the scope of mechanical engineering, are not quite common.
Certainly many articles in applied mechanics refer to Lie groups, for instance in their
title, but indeed they often make no real use of the powerful mathematical techniques
of algebra and differential calculus derived from the structure of Lie group as it is
understood in mathematics.

There are various methods to describe the configurations of rigid body systems
with coordinates.Indeed they all amount to describe by one or another technique
Euclidean displacements performed by the elements of the system and the significant
mechanical properties are those which, after all, can be expressed in the language of
this group. The goal of this book is double: first to show that the concept of Lie group
can be useful to mechanical engineering, second to show that the calculations with
Lie groups are powerful, very easy to handle in practical mechanical problems, on
one condition: to make a small effort in order to learn some rules. The book aims
at demonstrating that those required rules are not numerous, and that they make a
complete system to state all the problems of general mechanics in a very compact
form fully compatible with numerical or algebraic softwares. Whereas the common
approach to the modeling of a complex mechanical system starts with a “forest of
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frames”, the modelization based on Lie groups needs no necessary frame and no
coordinates and is expressed in intrinsic form translatable in computer language.

Concerning the first objective we may remark that, in multibody mechanics,
the efficiency of Lie group calculations, in the true sense, were soon demonstrated
by applications (see [MIZ 92, MIZ 88, MON 84], going with the theoretical works
[LER 88, CHE 86]). The task will be to extend the Lie group language from the more
or less classical applications to the mechanics of a single rigid body to systems of
rigid bodies and the above mentioned rules contain all the necessary algebraic and
differential calculus required to generate their kinematic and dynamic equations. In
the model of the systems we consider in the book we assume that the joints may
be described Lie subgroups of the Euclidean displacement group what is the most
common occurrence. Of course for final numerical calculations it will be necessary to
refer to some coordinate system but a big advantage of the method is that the heavy
calculations may be switched to the computer; only the mathematical structure of the
statement of the mechanical problem in the language of differential calculus in Lie
groups will be necessary at the preliminary stages of the design of a software.

The second objective is perhaps the leading motivation of this work. It was
mentioned above: as soon as they concern rigid bodies, the calculations in kinematics
and dynamics are calculations the Euclidean group D in dimension 3 which is a
classical Lie group. From this standpoint they may be roughly distributed among
three main levels according to the sharpness of the mathematical structure which is
concerned at each level.

— The calculations of level 1, do not refer to the particular features of the Euclidean
group, they only rely on the general Lie group structure of D (that is to say only the
algebraic structure of group and the structure of manifold allowing the differential
calculus).

— The calculations of level 2, use a particular feature of the Euclidean displacement
group and they refer to the splittings of I into a “translation group” and a “rotation
group” about some fixed origin in space.

— The calculations of level 3 are performed in the coordinate language where all the
quantities are described by matrices depending on coordinates in I (as Euler angles
or Cayley-Klein parameters and so on).

It is at level 2 that, in mechanics, all relation splits into a “linear part” and an
“angular part”, that the velocity of a rigid object may be described by a linear and an
angular velocity, that a “torsor” splits into two “Pliicker’s vectors”. At this level all the
calculations may be performed in dimension 3 with standard vector algebra, but the
structure of all formulas are much more complicated than at level 1.
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At level 1, the calculations may be performed with a well defined algebra in
dimension 6!. It is at this level that all the mathematical relations take the most
compact form so that it is worth to perform the most possible part of calculations
at this level. When it will be necessary to come back to a more familiar mathematical
formalism the translation of those relations into (more complicated!) relations taking
into account properties of the Euclidean group and Euclidean geometry will be easy.
For instance what is at level 1 a product of two elements of a group D becomes
at level 2, with a more detailed representation of those elements, a product of two
6 x 6 matrices of operators of a well defined form and, at level 3, may become
a product of two 4 x 4 matrices with the well-known more detailed representation
of displacements in coordinates (section 1.5.1) or another product of matrices when
other representations are more convenient. As it will be explained in Chapter 1, this
process of gradual translation integrates all the necessary differential calculus. The
mathematical form of the relations holding at level 1 is preserved through all this
process even if we should include a level for a computer language. It seems to be
necessary to stress on the fact that, despite the rather abstract mathematical language
used at level 1, it may be very readily translated into a programming language.

A frequent criticism against the improvements of the mathematical methods to
model the mechanical systems by using more sophisticated mathematics says that the
reward for the necessary efforts are out of proportion to the gain of their use. If such
criticism would be fully justified their would not be so many attempts to get over the
difficulty to solve kinematical problems or to build the dynamic equations for many
body systems. And so many articles to come back to this problem presenting attempts
by means of “new methods™2. This situation points out that a need for clarification
arises. It is not easy to understand the mathematical structure which is behind the
dynamic equations through their the very complicated expanded form in coordinates.
The clarification will likely come from using an intrinsic formalism. The effectiveness
of a direct approach by Lie group and Lie algebra theory is highlighted by the complete
classification of the singularities of mechanisms; certainly, this classification would be
extremely difficult to point out in the coordinate language. The same remark may be
done about the investigations of the mathematical structure of the dynamic equation
in the line of an easy interface between mathematical modelization and computer.

The organization of the book is the following:

Chapter | introduces the Lie group structure on the various examples of groups
involved in mechanics of rigid body and rigid body systems from the standpoint
of algebra and differential calculus. The mathematical techniques introduced in this

1 In practice but, in fact, at level 1 the form of the calculation is independent of the dimension.
2 The complexity of this problem, and consequently the need for truly new methods, was
emphasized in Y. Papegay’s thesis [PAP 92] where expanded- forms of the dynamic equations
which should be almost impossible to derive “by hand” are demonstrated.



xvi  Multi-Body Kinematics and Dynamics with Lie Groups

chapter contain a complete system of rules for expanding all the calculations in
kinematics and dynamics of articulated multibody systems. Those techniques are
nothing but those of general theory of Lie groups applied to the Euclidean groups.

Chapter 2 presents the theory of dual numbers and dual vectors in an intrinsic form,
showing that it is the study of a module structure on the Lie algebra of the Euclidean
displacement group.

Chapter 3 completes the preceding Chapter 2 with some remarks on the so called
transference principle.

In Chapter 4 the book starts with mechanics proper and points out the links
between kinematics and the differential calculus in Lie groups in the typical case of a
rigid bodies and chains of linked rigid body. This chapter also points out the relations
between the standpoint of Lie groups and the more familiar expositions of mechanics
relying on the models of rigid bodies as aggregates of particles.

Chapters 5 and 6 deal with kinematics of open and closed chains (i.e. mechanisms)
and their singularities with examples of calculations based on the mathematical
framework of this book.

Chapter 7 is a detailed presentation of the dynamics of the rigid body in the
frame of Lie groups and of its links with the classical presentation of this matter.
The fundamental law of dynamics is presented in Galilean and non-Galilean frames
directly for a realistic body (not reduced to a massive particle). Everything indicates
that the full system of the dynamic equations of a rigid body — in translation and
in rotation and reduced to one equation [7.34] in dimension 6 — takes a very simple
mathematical form easy to handle in the framework of multibody systems.

Chapter 8 deals with dynamics of rigid body systems. In particular as an example,
a complete presentation of techniques to generate the dynamic equations of a tree-
structured system.

Some exercises are proposed in order that the reader who will deal with them will
become more familiar with the mathematical framework used in the book. In particular
some proofs of theorems or propositions are left to the reader as exercises. An asterisk
indicates an exercise or a question requiring the knowledge of rather technical tools in
mathematics.

Each of these chapters includes an introduction with bibliographical references.
We only mention here some general points. The systematic use of the (algebraic)
structure of group in mechanisms theory, widely improved in the direction of the
design of robots, was introduced by J. M. Hervé [HER 78] (1978) and in [HER 82],
[HER 94]. The differential calculus on Lie groups with applications to kinematics was
developped by A. Karger and J. Novak [KAR 85] (1985).
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Kinematics and dynamics of multibody systems were presented in
Lerbet [LER 88] (1988), Chevallier [CHE 86] (1984). Applications to dynamics
of concrete complidcated mechanical systems appeared in C. Monnet and
D. Chevallier [MON 84] (1984) or J.P. Mizzi [MIZ 92, MIZ 88] (1988). More
recently Andreas Muller developped applications to mechanisms, with numerical
algorithms (see for instance [MUL 03, MUL 14a, MUL 14b]), Frederic Boyer and
A. Shaukat (see [BOY 11] and [BOY 12]) developed applications to robotics fixed
and mobile multibody systems including elements of Lie group theory in numerical
methods.
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