Software Tools
in Pascal

Brian W. Kernighan

P. J. Plauger

Software Tools
in Pascal

Brian W. Kemighan

Bell Laboratories
Murray Hill, New Jersey

P. J. Plauger

Whitesmiths, ;
New York, ;-
//—

v
ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts

Menlo Park, California + London - Amsterdam - Don Mills, Ontario -

Sydney

This book was set in Times Roman and Courier by the authors, using a Mergenthaler Lino-
tron 202 phototypesetter driven by a PDP-11/70 running the Unix operating system.

Unix is a trademark of Bell Laboratories. DEC, PDP and VAX are trademarks of Digi-
tal Equipment Corporation.

Copyright © 1981 by‘ﬁq[l\zﬂephone “Laboratories, Incorporated, and Whitesmiths, Ltd.
Philippines copyright 1981 by Bell Telephone Laboratories, Incorporated, and
Whitesmiths, Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simuitaneously in Canada.

ISBN 0-201-10342-7
ABCDEFGHIJ-DO-8987654321

PREFACE

This book teaches how to write good programs that make good tools, by
presenting a comprehensive set, each of which provides lessons in design and
implementation. The programs are not artificial, nor are they toys. Instead,
they are tools that have proved valuable in the production of other programs,
We use most of them every working day, and they account for much of our
computer usage. The programs are complete, not just algorithms and outlines,
and they work: all have been tested directly from the text, which is in machine-
readable form. They are readable: all are presented in standard Pascal. They
are documented, so they can be used. Most important, the programs are
designed to work well with people and with each other, and are thus_perceived
as tools.

The book is pragmatic. We teach top-down design by walking through
designs. We demonstrate structured programming with structured programs.
We discuss efficiency and reliability in terms of actual tests carried out. We
illustrate documentation by presenting it for each program. We treat portability
by writing in a language that is widely available, and by isolating unavoidable
system dependencies in a handful of small, carefully specified routines that can
be readily built for a particular operating environment. All of the programs
presented here have been run without change on at least three different

ines and several different Pascal compilers and interpreters. The code is
available in machine-readable form as a supplement to the text.

The principles of good programming are presented not as abstract sermons
but as concrete lessons in the context of actual working programs. For example,
there is no chapter on “efficiency.” Instead, throughout the book there are
observations on efficiency as it relates to the particular program being
developed. Similarly there is no chapter on “top-down design,” nor on “struc-
tured programming,” nor on “‘testing and debugging.” Instead, all of these dis-
ciplines are employed as appropriate in every program shown.

The book is suitable for a “software engineering” course or for a second
course in programming — more so, we feel, than the traditional dose of “com-
pilers, assemblers and loaders,” for the programs presented here are more of the
size and nature that will be encountered by most programmers. It is also

vii

viii SOFTWARE TOOLS IN PASCAL

suitable as a supplementary text in any programming course; the only prere-
quisite is programming experience in a high-level language. Professional pro-
grammers will find it a guide to good programming techniques and a source of
proven, useful programs. Numerous exercises are provided to test comprehen-
sion and to extend the concepts and the programs presented in the text.

Software Tools was originally published in 1976 with the programs written in
Ratfor, a language based on Fortran. Ratfor was implemcnted as a preproces-
sor; it provided Fortran with modern control flow statements like if-else and
while, and some cosmetic improvements like symbolic constants and free-form
input. The approach and the tools have proved sufficiently useful that many
copies of them have been distributed, and there is a large, active user group.

Pascal is now the dominant teaching language for computer science courses,
and is becoming widely used outside of universities as well. We feel that the
lessons about the design and implementation of tools from the original book
carry over intact to Pascal. Thus Soeftware Tools in Pascal has a great deal of
overlap with the Ratfor original. The same programs aré present, except that
there is no preprocessor chapter, since Pascal provides most of the sensible con-
trol flow and cosmetic improvements that Ratfor adds to Fortran. On those sys-
tems where Pascal needs augmentation, tools such as the macro and file inclu-
SiOn processors serve as language preprocessors.

The programs here are not just transliterations into Pascal, however. Almost
every program has been lmproved in some way. Pascal lets us do some things
much’ better than is possible in Fortran. Recursion in particular is a boon.
Quicksort and regular expression closure are much simpler when done recur-
sively instead of with a stack ‘or linked list; expression evaluation has been
added to the macro processor.

“Pascal data types are generally more suitable for the elear expression of algo-
rithms. Records let us deal with a group of related variables as a unit.
Subranges and enumerated types make it easier to constrain the set of legal
values for variables, so that errors are detected sooner and the code is easier to
read. And eight-character variable names are a lot less contorted than six.

Regrettably, though, standard Pascal is far from an ideal language; in many
ways it is less suitable for writing large programs than Fortran is. Since there is
no standard way to specify separate compilation, the growth of libraries to
extend the language is stunted. Since the size of an array is part of its type in
standard Pascal, it is hard to write general-purpose routines that process arrays
of different sizes. The lack of own variables and initialization forces variables
to have global scope where Fortran would make them local to a single routine.
Finally, the operating system interface provided by Pascal is just as unsuitable as
Fortran’s, but the language makes it harder to escape to one'’s own.

There are versions of Pascal that deal with each of these problems, with
some success, but each such extension is non-standard and rarely portable Our
code adheres to the standard; it will work everywhere. The price we pay is
increased compilation time, sometimes involving the use of one or more

PREFACE X

preprocessing steps; larger load modules, to provide an extended environment in
the absence of libraries; and slower execution time, because we have consistently
traded efficiency for portability. Each of these areas is readily amenable to
improvement, however, by tuning the system interface to each local environ-
ment.

Building on the work of others is the only way to make substantial progress
in any field. Yet programmers reinvent programs for each new application
instead of using what already exists. We hope that Sofrware Tools in Pascal will
instill a feeling for how to design and write good programs that can be widely
used, how to use existing tools, and how to improve a given environment with
maximum effect for minimum effort.

We are grateful to many friends for careful reading, perceptive criticism, and
continuous cheerful support. Ron Hardin, John Linderman, Doug Mcllroy,
Rob Pike and Dennis Ritchie all spent many hours reading the manuscript. and
exercising the programs, and made invaluable suggestions on how to improve
both. We deeply appreciate their efforts. Our thanks also to Al Aho, Doug
Comer, Al Feuer, John Gannon, Peter Grogono. Dave Hanson, Debbie
Scherrer, and Chris Van Wyk for helpful comments at various stages. Bill Joy
and Andy Tanenbaum provided us with rock-solid Pascal compilers; Bill Joy
also made it possible for us to time our programs. Chuck Howertoa provided
the impetus that got us started in the first place.

Finally, it is a pleasure to acknowledge our debt to the Unix operating sys-
tem, developed at Bell Labs by Ken Thompson and Dennis Ritchie. We wrote
the text, tested the programs, and typeset the manuscript, all within Unix.
Many of the tools we describe are based on Unix models. Most important, the
ideas and philosophy are based on our experience as Unix users. Of all the
operating systems we have used, Unix is the only one that has been a positive
help in getting a job done instead of an obstacle to be overcome. The world-
wide acceptance of Unix indicates that we are not the only ones who feel this
way.

Brian W. Kernighan

P. J. Plauger

!

IR N

CORTENTS

Preface

Introduction

Getting Started 7
Filters ' e
Files 63
Sorting 109
Text Patterns 141
Editing 169
Formatting - 227
Macro Processing 265
Epilogue . 311
Appendix: Implementation of Primitives 315
Index of First Lines 353
Index 359

All of the programs described in this book are available
in machine-readable form from Addison-Wesley.

INTRODUCTION

We are going to discuss two things in this book — how to write programs
that make good tools, and how to program well in the process.

What do we mean by a r00l? Suppose you have a 5000-line Pascal program
and you need to find all references to the variable time, to make sure it can
safely be changed from type integer to type real. How would you do it?

One possibility is to get a listing and mark it up with a red pencil. But it
doesn’t take much imagination to see what's wrong with red-penciling a huf-
dred pages of computer paper. It's mindless and boring busy-work, with lots of
opportunities for error. And even after you've found all instances of time, you
still can’t do much, because the red marks aren’t machine readable.

Another approach is to write a simple program to find lines containing the
identifier time. This is an improvement, for such a program is faster and more
accurate than doing the job by hand. The trouble is that the program is so spe-
cialized that it will be used once by its author, then tucked away and forgotten.
No one else will benefit from the effort that went into writing it, and something
very much like it will have to be reinvented for each new application.

Finding time’s in a Pascal program is a special case of a general problem,
finding patterns in text. Whoever wanted references to time today will want
references to some other variable tomorrow, readln and writeln calls the
day after, and next week an entirely different pattern in some unrejated text.
Red penciling never ends. The way to cope with the general problem is to pro-
vide a general purpose pattern finder that will look for a specified pattern and
print all the lines where it occurs. Then anyone can say

find partern

and the job is done. £ind is a tool: it uses the machine; it solves a general
problem, not a special case; and it’s so easy to use that people will use it instead
of building their own.

Far too many programmers are red pencillers. Some are literal red pencillers
who do things by hand that should be done by machine. Others are figurative
red pengcillers whose use of the machine is so clumsy and awkward that it might
as well be manual. One purpose of this book is to show how to build tools —

1

2 SOFTWARE TOOLS IN PASCAL

programs to help people to do things by machine instead of by red pencil, and
how to do them well instead of badly. We’'re going to do this, not by talking in
generalities but by writing real, working programs, programs that we know from
experiénce are useful tools. Every program in this book has been run and care-
fully tested, directly from the text itself, which is in machine-readable form.
All of them have been run without change on a variety of machines and Pascal
compilers.

The second concern of this book is how to write goed programs. As we
proceed, we hope to convey to you principles of: good design, so you write pro-
grams that work and are easy to maintain and modify; human engineering, so
you can use them conveniently; reliability, so you get the right answers; and
efficiency, so you can afford to run them,

We don’t think that it is possible to learn to program well by reading plati-
tudes about good programming. Nor is it sufficient to study small examples.
Rather than present ideas like structured programming and top-down design as
abstract principles, we have tried to distill the important contributions of each
and put them into practice in all our code. That way you can see what they
mean, how to use them on real problems, and what benefits they are likely to
produce.

We also try to show how we went about building the programs, rather than
just presenting the finished product, or pretending that we arnved at the final
result by some mechanical process. For each program we discuss its purpose,
how it should be designed to be easy to use, what considerations affect its struc-
ture and implementation, and some of the alternatives that exist. We don’t
claim that these are the best possible programs, or that our way is the only way
to design and write them. But even if you would do them differently, studying
the development of a coherent set of well-wnitten and useful programs should
help you better appreciate the significance of some of these ideas, and ulti-
mately to become a better programmer.

We have quite a few tools to show you. Most of these are programs of
manageable size, programs that one person can reasonably write in an hour or a
day or a week. Clearly we can’t present giant programs like operating systems
or major compilers; few of us have the time, training or need to delve inside
such creatures anyway. Instead we have concentrated on the kinds of tools you
are likely to become involved with, programs that help you to make the most
effective use of whatever operating system and language vou already have.
There is an important lesson in this: well chosen and well designed programs of
modest size can be used to create a comfortable and effective interface to those
that are bigger and less well done.

Whenever possible we will build more complicated programs up from the
simpler; whenever possible we will avoid building at all, by finding new uses for
existing tools, singly or in combinations. Our programs werk fogether: their
cumulative effect is much greater than you could get from a similar collection of

INTRODUCTION 3

programs that you couldn’t easily connect. By the end of the book you will
have been introduced to a set of tools that solve many problems you encounter
as a programmer.

What sorts of tools? Computing is a broad field, and we can’t begin to
cover every kind of application. Instead we have concentrated on an activity
that is certral to programming — programs that help develop other programs.
They are programs which we use regularly, most of them every day; we used
versions of almost all of them while we were writing this book. In fact we
chose them because they account for much of the computer usage on the system
where we work. Although we can hardly claim that our choices will satisfy all
your needs, some should be directly useful to you whatever your interest.
Studying those that are not should provide you with ideas and insights about
how to design and build quality tools for your particular problems. Comparing
our designs with related programs on your system may lead you to improve-
ments in both. And learning to think in terms of tools will encourage you to
write programs that solve only the unique parts of your problem, then interface
to existing programs to do the rest.

Whatever your application, your most important tool is a good programming
language. Without this, programs are just too hard to write and understand;
you spend more time fighting your language than being productive. One of the
problems with writing about programming is choosing a language for the pro-
grams. No single language is known to all readers, available on all machines,
and easy to read. We must compromise. :

Since Pascal is widely available and well supported, we will use it as our base
in this book. Pascal is now the main language in university computer science
courses. It is available on almost all computers, and is sufficiently standardized
that programs can be written to run without change on a wide variety of sys-
tems.

Most programmers can quick'y achieve at least a reading knowledge of Pas-
cal. If you are used to some other language, you should have no difficulty fol-
lowing our programs, for properly structured programs seem to read the same in
most languages. We avoid most idiosyncrasies of Pascal, and hide the unavoid-
able ones in well-defined modules.

Although we are not writing a Pascal manual, we will try to explain new
constructions as they arise. Chapter 1 describes a few simple tools, as a way to
introduce our style of Pascal code and our conventions.

A surprising number of programs have one input, one output, and perform a
useful transformation on data as it passes through. We call such programs
filters. Some filters are so simple that you might hardly think of them as tools, -
yet a careful selection of filters that work together can handle quite complicated
processing. Several smaller filters are collected in Chapter 2, including a power-
ful character transliteration program.

Not all programs are filters. Chapter 3 discusses programs that interact with

4 SOFTWARE TOOLS IN PASCAL

their environment in more complicated ways, such as file inclusion, comparison
and printing, and an archive system for managing sets of files. The major prob-
lem in moving programs from one environment to another is precisely this ques-
tion of how a program communicates with its local operating system. We deal
with portability by specifying a small set of primitive operations for accessing
the environment. All of our programs are written in terms of these primitives,
so operating system dependencies are confined to a handful of procedures and
functions. Programs that use them can move to any system where the primi-
tives can be implemented. We have demonstrated this by moving all of the
tools in this book, without change, to several distinct Pascal systems on three
different computers.

Some filters are large enough to warrani separate chapters. The sorting pro-
gram of Chapter 4, the pattern finding and replacement programs of Chapter 5,
and the macro processor of Chapter 8 all fall into this category. The pattern
finder uses most of the code of the transliteration program in Chapter 2 to
recognize character classes, which are just one of a larger set of patterns that
can be specified. (The pattern finder is capable of a lot more than finding
instances of time, by the way.) Although these filters are biased toward pro-
gram development, the filter concept is valuable in any application. It
encourages the view that a program is just a stage in a larger process, and that
stages should be simple and easy to cornect. It also encourages the view that all
files and I/O devices should be interchangeable, so that any program can work
with any file or device.

Chapter 6 con’ ins a text editor that is rather more comprehensive than
those normally found in time-sharing systems. The editor incorporates most of
the code of the pattern finder of Chapter 5, so it recognizes the same class of
patterns. When used with some of the other programs presented, it can do jobs
that would otherwise require you to write a special program. Even if you are
not working in an interactive environment, the editor will prove to be useful.

Chapter 7 contains a text formatter that is a (much smaller) version of the
program used to set the type for this book.

Finally, as we have already mentioned, Chapter 8 contains a modest but use-
ful macro processor, which you can use to extend any programming language.

It might appear from this outline that we stress text manipulation too
heavily. Yet a large part of what programmers do every day is text processing
— editing program source, preparing input data, scanning output, writing docu-
mentation. These activities are at the heart of programming; as much as possi-
ble, they should be mechanized. Program development is the place where tools
can have the most impact. And since text processing programs come in all
sizes, they display at least as broad a spectrum of programming techniques as
language processors or numerical programs.

As you can see, the book is organized in terms of applications rather than
different aspects of the programming process. This is not a reference work on

INTRODUCTION 5

algorithms or data structures or Pascal. Nor will you find separate chapters on
design, coding, testing, debugging, efficiency, human engineering, documenta-
tion, or any of the other popular themes. We are engaged in the business of
building tools, and of building them properly. All of these aspects of program-
ming arise, in varying degrees, with every program, and can be kept in perspec-
tive only by discussing them as we write the programs. In the process, we will
try to communicate to you our approach to tool building, so you can go on to
design, build, and use tools of your own.

Bibliographic Notes

The programming language Pascal has had considerable impact on comput-
ing practice; it is especially suitable for structured programming and for describ-
ing data structures. Read Systematic Programming. An Introduction (Prentice-
Hall, 1973) by N. Wirth, the designer of Pascal. The special issue of Computing
Surveys on programming (December, 1974) contains several papers well worth
reading, including one by Wirth. Pascal has also influenced the design of newer
languages, most notably Ada; you might read “An Overview of Ada,” by
J. G. P. Bamnes, Software Practice and Experience, November, 1980, or Pro-
gramming with Ada by P. Wegner (Prentice-Hall, 1980).

The Pascal language is defined in Pascal User Manual and Report (2nd Edi-
tion), by K. Jensen and N. Wirth (Springer-Verlag, 1978), and with more detail
and precision in the proposed ISO Standard for Pascal (See, for example, SIG-
PLAN Notices, April, 1980.)

One of the most influential proponents of good programming is E. W. Dijks-
tra. You should read Structured Programming, by O.-]J. Dahl, E. W. Dijkstra
and C. A. R. Hoare (Academic Press, 1972) and Dijkstra’s A Discipline of Pro-
gramming (Prentice-Hall, 1976).

An excellent set of essays on programming and on the problems of develop-
ing big systems is found in F. P. Brooks’ The Mythical Man-Month (Addison-
Wesley, 1974). The term “egoless programming” was coined by G. M. Wein-
berg in his delightful book The Psychology of Computer Programming (Van Nos-
trand Reinhold, 1971).

The Elements of Programming Style (2nd Edition), by B. W. Kernighan and
P. J. Plauger (McGraw-Hill, 1978), contains an extensive discussion of how to
improve computer programs, with numerous examples taken from published
Fortran and PL/I code.

The original version of this book is Sofrware Tools (Addison-Wesley, 1976)
The programs therein are written in Ratfor, a structured dialect of Fortran
implemented by a preprocessor. They have proved sufficiently popular that a
user group exists, and the tools themselves are used at several thousand sites.
See A Virtual Operating System,” by D. E. Hall, D. K. Scherrer and J. S.
Sventek, CACM, September, 1980. With the major exception of the Ratfor
preprocessor itself, all of the tools from the original are presented here.

e,

7 .fn..._-l'

. = risalul = LT .qli-

o o gl 9y g Bl e L

‘: _*- r!- _.11“.-_!1— ’_1'-__'|| -I
= ‘-.ﬁ H.!_ll - _:_. "'* 45 "'h-

.""'i-"-.' : -ra,.'r R . Lo -nh--l.J'.-r T p— 3
' L kvt Wy e ot ol ey VLN o ¢
riom s, l-l:h-:l-:-Jm-.- g .u__-":r-:-‘ "ru--lﬂmv-

.tl“JF.-r *mr;'

| .H-“‘ﬂj
ST L ,:,u'

',l _‘..|,‘r

Iﬂr wrp H'i.‘ Ll fl Er TH:
1 = al.H

CHAPTER 1: GETTING STARTED

This chapter is an informal introduction to our way of using Pascal, and to
some of the ideas and conventions used throughout the book. It also presents a
handful of small but useful programs, to make the discussion concrete. We can-
not present complete programs without occasionally using concepts before they
are explained, so you will have to take some things on faith as we get started or
we'll get bogged down explaining our explanations. Bear with us.

1.1 File Copying

The first problem we want to tackle is how a program communicates with its
environment. Since many of our programs are concerned with text maripula-
tion, one basic operation is reading characters from some source of input. To
do this we will invent a function called getc, which reads the nex: input char-
acter, and returns that character as its function value; each time it is called, it
returns a new character. For now we’ll ignore where the characters come from,
although you can imagine them originating at an interactive terminal or some
secondary storage device like a disk.

We won’t discuss what character set we have in mind, except to say that
getc can return a value, distinguishable from all input character codes, that
indicates that the end of the input has been reached. Similarly, the end of a
text line is indicated by yet another unique value that is returned by getc.
We'll also ignore all questions of efficiency, although we’'re fully aware that
reading one character at a time at least sounds expensive. Temporarily we want
to sweep as many details as we possibly can under the rug.

Next we invent putc, the complement of getec. putc puts a single charac-
ter somewhere, such as a terminal, a printer, or a disk; one of its acceptable
argument values signals the end of a text line. Again, we won’t concern our-
selves with the precise details, nor with the efficiency of the operation. The
main point is that getc and putc work together — the characters tiat getc
gets can be put somewhere else by putc.

If someone has provided these two basic operations, you can do a surprising
amount of useful computing without ever knowing anything more about how
they're implemented. As the simplest example, if you put the getc/putc pair

-

8 SOFTWARE TOOLS IN PASCAL CHAPTER 1

-inside a loop:

while (gete(c) is not at end of input) do
putc(c)

you have a program that copies its input to its output and quits. A simple task,
performed by an equally simple program. Certainly, someone ultimately has to
worry about the choice of character set, detecting end of line and end of input,
efficiency and the like, but most people need not be concerned, because getc
and putc conceal the details. (If you want to know how they might work, we
will show you simple versions in standard Pascal soon, and also explain why we
didn’t just use read and write.)

Functions like getc and putc are called primitives — functions that inter-
face to the ‘“‘outside world.” They call in turn whatever input and output rou-
tines must be used with a particular operating system and compiler. To the pro-
gram that uses them, getc and putc define a standard internal representation
for characters and provide an input-output mechanism that can be made uni-
form across many different computers. If we use primitives, we can design and
write programs that will not be overly dependent on the idiosyncrasies of any
one operating system. The primitives insulate 3 program from its operating sys-
tem environment and ensure that the high level task to be performed is clearly
expressed in a small well-defined set of basic operations.

The program shown above is written in *‘pseudo-code,” that is, a language
that resembles a real programming language but avoids excessive detail by from
time to time resorting to ordinary English. Writing in pseudo-code lets us
specify quite a bit of the program before we have worked out all aspects of it.
On’ larger programs, it is valuable to begin with pseudo-code and refine it in
stages until it is all executable. You can revise and improve the design at a
high level without writing any executable code, yet remain close to a form that
can be made executable.

The next step is to write copy in standard Pascal, ready to compile and run.

{ copy -- copy input to output !}
procedure copy;

var
c : character;
begin
while (getc(c) <> ENDFILE) do
putcic)
end;

Some explanations: First, and most obvious te people who have used Pascal
before, is that this is not a complete program — it is just a procedure. So it
needs some surrounding context before it can actually do anything for us. We
intend to present all of our programs this way, as procedures that fit inio a
larger context, so we can better focus on the essential ideas. To make copy
run, we actually need something like this:

CHAPTER 1 GETTING STARTED 9

{ complete copy -- to show one possible implementation }
program copyprog (input, output);
. .
ENDFILE = -1; -
NEWLIRE = 10; { ASCII value }
type
character = -1..127; { ASCII, plus ENDFILE }

{ getc -- get one character from standard input }
function getc (var c : character) : character;
var
ch : char;
begin
if (eof) then
c := ENDFILE
else if (eoln) then begin
readln;
¢ := NEWLINE :
end b
else begin
read(ch);
¢ := ord(ch)
end;
gete = ¢
end;

{ pute -- put one character on standard output }
procedure putc (¢ : character);
begin
-if (e = NEWLINE) then
writeln
else
write(chr(c))
end;

{ copy =-- copy input to output }
procedure copy;

var
¢ : character;
begin
while (getc{c) <> ENDFILE) do
putelc)
end;

begin . { main program }
: copy’
end.
The context shown here defines all the constants, types, and functions needed
by copy. It is presented in standard Pascal to illustrate the behavior of getc

10 SOFTWARE TOOLS IN PASCAL CHAPTER‘1

and putc in terms familiar to Pascal programmers, and to demonstrate that the
primitives can be implemented in a fashion that is supported on all Pascal sys-
tems. For most implementations, however, some special treatment would be
given to getc and putc, to make them as efficient as possible.

The advantage of wrapping a program in an outer shell is that we can gradu-
ally add to the surrounding environment as we make the programs more sophis-
ticated, without having to repeat a lot of description every time we present a
new program. The standard context for the programs in the book is much
larger than what we showed here. In particular, we put the definitions of func-
tions and procedures like getc and putc, constants like ENDFILE, and types
like character in the outer block so they are readily available to the whole
program. In Chapter 3 and Chapter 8, we will show some programs that help
to automate collecting the pieces of a program. The appendix shows the
declarations we use. We will assume without further comment that all subse-
quent programs are wrapped up this way.

Now back to copy itself. The first line is just a comment, of course, that
says briefly what the procedure does. This kind of comment will occur on every
function and procedure in the book. We use { and } to delimit comments; you
may have to use (* and #) if your character set does not include braces.

The lines

var
¢ : character;

declare c to be a variable of type character. Note that character is not
the same as the standard type char, for it must represent values like ENDFILE
that must be different from legitimate values of type chaxr.
The lines
while (getc(c) <> ENDFILE) do
putc(c)

are where all the work of copy gets done. The while statement specifies a
loop; so long as the condition inside parenthesest is true, the body of the loop
(in this case, the single statement putc(c)) is repeatedly executed. Eventually
the condition becomes false, and the loop terminates. copy then returns to its
caller, and the whole program terminates. The condition being tested in the
while loop is

getc(c) <> ENDFILE

The notation <> means “‘not equal to,” so the loop continues while the charac-
ter returned by getc is not ENDFILE. :

+ Strictly speaking, parentheses aren’t needed here, but they are in conditions that involve and and
or. We intend to stick them in everywhere because it's easier than remembering when they’re
needed and when they’re not.

