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Preface

The present book arose out of a year-long course in
numericéi functional analysis given from time to time since
1970 at the University of Wisconsin. This volume introduces
the basic techniques of functional analysis and .applies them
to linear problems. It also lays the foundations for volume
2 which will consider boundary value problems for elliptic
equations, and nonlinear problems.

Particular features include:

(1) The concepts of functional analysis are developed sys-
tematically, with frequent pauses to introduce appli-
cations. Detailed indexes are provided for the reader
who wishes to use the material in a different order.

(2) Solutions are given for all the problems except the
last few, which are very specialized. This should
help students who have taken basic courses in analysis
but have little experience of providing proofs.

(3) A large number of counterexamples are given, to show
that various results are not triye if the- hypotheses are
weakened. This 1ntroduces the reader to an important
aﬁbect of mathematics which is often neglected — one
must not only prove conjectures but also dzqnw’ethem

Parts of the text were used as course material by
John Halton, who made several useful suggestlons.

Ennio Stacchetti read the first eight chapters, solved many

of the problems, and made an invaluable contribution.

The camera-ready copy was typed by Marilyn Wolff, who
showed not only great skill but also limitless patience.

Throughout the period of writing the author received:
‘support from the National Science Foundation (most recently
under grant No. MCS77-26732) and the U.S. Army (most recently
undér grant.No. DAAG29-80-C-0041.
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1
Introduction

In this book we are concerned with the applications of func-
tional analysis to numerical analysis. It is assumed that
the reader is familiar with calculus, matrix theory, and basic
numerical methods. Some knowledge of Lebesgue integration
would be helpful, but the essential facts are summarized in
Chapter 4. No knowledge of functional analysis is presumed,
and the various aspects of functional analysis are developed
as required. However, the emphasis is on the applications,
and we sometimes state and explain, but do not prove, theorems
with lengthy or uninteresting proofs in order to leave time
to show how the theorems can be applied.

Functional analysis is a subject which has developed dur-
ing the twentieth century. There were at first a number of
scattered, but important, papers, and the subject perhaps first
gained the stature of a discipline with the publication in
1932 of the monograph by S. Banach, Théorie des opérations
linéaires. There is no generally accepted definition of func-
tional analysis. From our point of view we may define func-
tional analysis as infinite-dimensional analysis: that is,
functional hnalysishfxtends, so far as possible, the concepts
of matrix theory and calculus for a finite number of dimensions
to an infinite number of dimensions. For example, consider
the Fredholm integéfl equation of the second kind,

x(s) + I k(s,t)x(t)dt = £(s), 0O0<s=<1 , (X.1)

0
Formally, this equation is rather similar to the matrix equation
x:# Ky = F , (1.2)

where x and f are n-vectors, and K is an nxn-matrix.
Indeed, many numerical methods of approximating eqn (1.1) will
lead to an equation of the form (1.2). The solution x of
eqn (1.2) involves only the finite number of components X5
of x , but the solution ;(s) of eqn (1.1) involves the

infinitely many values x(é), 0 <s<1 . However, muchof the'
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theory of eqn (1.2) can be extended to eqn (1.1). Indeed,
beginning with the beautiful paper of Fredholm (1900), the
analysis of integral equations has been the source of many
ideas in functional analysis. .

The first volume of this book covers the basic theory
of linear spaces. The second volume will begin by considering
weak topologies, which serve as an introduction to Sobolev
spaces, and then turn to the theory of nonlinear problems.
While the subjects covered are standard, the emphasis given
to the various topics is different to that in most texts on
functional analysis for two reasons:

(1) We judge a particular topic by its usefulness
rather than its depth or beauty. For exam?le,
the principle of uniform boundedness is discussed
at great length in Chapter 5 because of its many
applications. N

(2) A numerical analyst may be thought of as a mathema-
tician with one hand tied behind his back, because
while a mathematician can use either constructive
or non-constructive methods, a numerical analyst
must use constructive methods. Therefore, a con-
structive approach such as a contraction mapping
is much more useful than a non-constructive
approach such as the Schauder fixed point theorem
because the constructive approach immediately
leads to a numerical method.

Numerical functional analysis began with the publication
in 1948 in the Russian journal Uspekhi Matem. Nauk of a long
paper by L. V. Kantorovich entitled 'Functional analysis and
applied mathematics'. In the introduction to this paper
Kantorovich wrote: i

'Explicitly, we want to show that the ideas and
methods of functional analysis may be used for the con-
struction and analysis of effective practical algorithms
for the solution of mathematical problems with just the
same success as has attended their use for the theoret-
iéal investigation of these problems.'
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It took quite a long time before the ideas of Kantorovich
became widely known. A helping factor was the pﬁbiication in
1952 by the U,S. Bureau of Standards of a translatlon due to
C. D. Benster and G. E. Forsythe, but even this translation
was a rarity. Another early reference, which drew attention
to the value of using functional analysis to analyse numerical
methods for matrix problems, was the book of Faddeeva, the
first chapter of which was translated into English in 1952.

The goals of numerlcal functional® analysis-are:

i

(1) To s1mp11fy and unlfy by treatlng whole classes of
problems at once. X

(2) To br1ng the power of the general results of func-
tional analysis to bear upon the problems of numer-

ical analysis.

Numerical functional analysis may be expected to play an im-
portant role.in the, following: situations: . .

L ¥ (i)

(1) When the mathematics of a problem depends’ héavily-.
upon functional analysis.. For cxample, functional
analysis plays an important role in the modern
theory of‘ partial’differential’ equations3yvwandiit:d:
is therefore to be expected- (and’ is'indéed the .
case) that thestheory”®f numerical méthods: for . o~
partial differential equations will also depend
héavily upon functional analysis. W '

(See Section 5.7)

(2) When whole classes of numerical methods are belng
considered, as, for. example, when one con51ders all
convergent quadrature formulae. (Section 5.3).

(3) When proving the existence of a numerical me;hod
with certain properties (e.g. Example 7.4).

On the other hand, numerical functional ‘analysis.may be ex+ -
pected to play a less important role” when a specific method:
for a specific problem is being considered; and numerical '
functional analysis has mnothing to say about ‘the. pract1cal
implementation of a numerical method. 51
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- The goals of numerical functional analysis are best il-
lustrated by a famous example, Newton's method. Newton's
method for solving the equation in a single real variable

£(x) =0, (1.3)
is given by

X, = x, - £f(x)/f(x) . (1.4)

n+l n

If f is twice continuously differentiable then it is possible
to show that Newton's method is quadratically convergent, and
to establish conditions- wirich ensure its convergence. How

can we generalize Newton's method to the case when there are
two equations

f(x,y) =0,
glx,y) =0,

g (1.5)
and two unknowns x and y? Well, we note that eqn (1.4)
is equivalent to

£(x,) + (xn*l'xn)%(xn) =0 .

That is, we have expanded f{x) in a Taylor series about
X, s and retained only the first two terms. Applying the
same argument to eqns (1.5) we obtain

]

f(xn’yn)."'(xm-l-xn) %% (xn’yn) f(yn+1-yn) %%‘(xn,yn) 20 4
- (1.6)
9
8(Xp07p) * (Xpuy %) B (g Y)Wy el BB (xpak) =0

which is Newton's method for eqns (1.5). 1In his 1948 paper
previously mentioned, Kantorovich considered Newton's method
from the viewpoint of functional analysis. He established
quadratic convergence, as well as conditions which ensure
convergence, Kantorovich's proof held not only for eqn (1.6)
but also for any finite number of dimensions, and, indeed,

for many infinite-dimensional problems. Hence, in this case
the methods: of numerical functional analysis were triumphantly
vindicated.
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At present, the methods of functional analysis have So

permeated numerical analysis that an understanding of func- |,

tional analysis is essential for an understanding of modern
numerical analysis. However, two warnings should be sounded:

(1)

(ii)

Functional analysis seeks to generalize so that in
casting a particular problem into funct10na1 anal-
ysis form some essential features may be lost. Foi
example, if the kernel k(s,t) in eqn (1.1) is nen-
negative then certain numerical methods for solving
eqn (1.1) may exhibit desirable properties suéh as
monotone convergence, but these properties will be
'invisible' in any functional analysis approach
which does not make use of the non-negativity Qf
k(s,t)

Ideas are not always generated by logical processes.
An engineer may have a 'feeling' for a problem

which may lead him to a method of solution. A
functional analyst may not be led to the method

of solution thought of by the engineer because his
mind is working along different paths. The reverse
is of course also true. ‘ '

In summary, numerical analysis is not Just a branch of func-
tional analysis but, rather, functional anglysis is a power-~
ful tool for use in numerical analysis. T : :

A detailed example of the beneficial 1nteract10n hetween
physical ideas, functional analysis, and clgssical numericai .,
analysis, is given by Radon's integral equatlon which Is COn-
sidered at length in (Sect1on 9.7, p3:332)."

L
“,

* - “‘: *
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2
Topological vector spaces

In thlS chapter we dlSCUSS the concept of a topological
vector space whlch as the name suggests, 1s a space possessing
a topology (open sets) and permitting linear operations (as for

ectors) Functlonal ana1y51s is concerned w1th the properties
of, and mapplngs between, topolog1ca1 vector spaces

2.1 PRELIMINARY REMARKS

‘«In elementary realk.analysis one is concerned.with one

topological vector space namely the real line 7R1 7

' e - » ‘. R,l e {x:'-&<x<+w} .

R1

- the concept of a topologlcal vector space by generalizing

is the’ prdtotypal topological vector space and we develop

- properties of ®Y By successively introducing more and more

assumptions, wé obtain a hierarchy of spaces, beginning with
the lowly topological spaces and-ending with the Hilbert

~ spaces. .As -more assumptions are made about a space, more prop-
“erties can .be :deduced but fewer concrete examples exist. If,
';oo many assumptions are -made-there will be only one concrete
~example, the real.line. There is, therefore, a, balance to be

achieved: ; one wishes to make enough assumptions to.be able to
derive interesting.properties, but .not so many assumptions as
.to exclude interesting applications..- . 3 i

The examples in this chapter and the following chapter
are intended to illustrate basic ideas, and often have no

direct connection with numerical analysis. In Chapter 4 we

list and discuss most of the spaces which are widely used in
numerical analysis. Later chapters give applications.

2.2 SET THEORETIC NOTATION

The following notation from set theory will be used
(Halmos [1960]). The symbol ¢ denotes membership in a set
so that xe A means that x 1is an element or point of the
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set or collection A , that x belongs  to A , and that A
contains Xx . Sets are often defined by enumeration: the set
A ={a,b,c} consists of the three elements a, b, and ¢ .
Sets whose elements are indexed will often be called families;
thus we may speak of a family of sets {Ai} fori- irel ,
where I is an Zindex set. The empty set, the set which con-
tains no elements, is denoted by § .

We will often be concerned with a given collection of
elements, one or more séts containing these elements, and
one or more collections ofithese'sets; as an aid in compre-
hension we will when possible denote the original elements
by lower case Roman letters, the sets containing these ele-
ments by uppér case Roman letters, and the collections of
sets by Greek letters; for example, '

l v X € C e Tﬂ )

If P(x), 1is a proposition concerning the.elemgnts x of
a set . A. then {x eA: P(x)} : denotes the set of elements Qf,
A  for which .P(x) 1is true. For example, the seﬁ
{x eRl: x 20} is the set of non-negative real numbers. The
statement 'if x e@ then P' . is true for every proposition
P

If A and B are sets and {Ai: iell is a family of
sets, then the union.and intersection of A and B are de-
noted by AuvB and A oB , respectively, while.fhe.union
and intersection of the A; are denoted by

i:l A.l or U Ai , -and 121 Ai or N Ai 5

respectively.

If every element of a set B is an element of a set A
we say that A <includes B , ‘or A contains B , or B 5
is a subset of A, and we write A>B or BcA ; in partic-
ular, A>A for every set A . By cdnféntioﬁ; the empty set
is a subset of every set. 1f “A>B and A=2B., B is a
proper subset.of A . If A=«B , A and B are distinct.

A\B or A-B denotes the elements of A which do not
belong to B ; A\B is the complement of B with respect
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to A . If A is understood from the context, we may speak
of the complement of B and denote it by BS

The set A is finite if A contains a finite number of
elements. The set A 1is denumerable or countable if there
exists a one-to-one correspondence between the elements of A
and a subset of the positive integers. The real interval
[0,1] is not denumerable. (Natanson [1954, p. 13])

The symbol [0 is used to denote the end of a logical
entity, such as the proof of a theorem.

If P and Q are statements such that whenever P is
true then Q 1is true, then P ZmplZies Q and we write
P=Q . If, furtheremore, Q=P then P and Q are equiva-
lent and we write P = Q; another way of saying this is 'P
if and only if Q' or, in abbreviated form, 'P tff Q'.

The logical operators AND, OR, and NOT will be used.

Logical notation helps to clarify the chain of arguments
in the proof of theorems. To prove that P =R it is often
convenient to prove first that P:’Q and then that Q=R .
If, furthermore, R=P, then P<+= R . We occasionally prove
that P =Q by proving the equivalent statement

NOT Q = NOT P

2.3 TOPOLOGICAL SPACES

The first property of R!  that we generalize is the con-

cept of open and closed sets, such as the open interval in Rr?

(a,b) = {x: a<x<b} ,

and the closed interval in R1

[a,b] = {x: a <x <b}

DEFINITION 2.1. A set X 1is a topological space with topol-
cgy 1t if 1 1is a collection of subsets of X satisfying

the following three axioms:
(1) The empty set @ and the whole set X belong to T.

(2)- 1f Gu ¢t for a € A, where A 1is an index set,

then U G et .
aeA

(3 1f G, , G2 et , then G1 n G2 €T 0
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The elements of a topology T are called open sets,
and axioms (2) and (3) of Definition 2.1 may be stated as
follows: the union of arbitrarily many open sets is open;
the intersection of finitely many open sets is open.

Strictly speaking, a topological space should be de-
scribed as a pair {X,t} , but it is usually clear from the
context, or by convention, which topology Tt 1is associated
with X , and in such cases we speak of the topological
space X ;

Some examples of topological spaces are:

EXAMPLE 2.1. X = {a,b,c}, =t = {@,X,{a},{b,c}} , where a,b,
) and c¢ are three elements. 0
EXAMPLE 2.2. X = R' . Get iff for every X ¢€G there ex-
ists an interval (a,b) ¢ G such that
~ ¢ {a,b) . This is the usual topology on Rl 3
and this topology will be used unles$ explicitly

stated otherwise. 0

There may be more than one topology on a set. Let two

topologies be introduced on a set X by means of T and

T, . IFf T, 2T, , we say that T is stronger (or finer)

than 1, , and that 1, is weaker (or coarser) than T, -

EXAMPLE 2.3. X

T

{a,b,c}, 1, = {(p,X, {a}, {b,c}},
{8, %, {a}, {b}, d4c}, {a,b}, {a,ec)k, {b,eck},
{#,%; £b}, {a,c}} .

2
'3
The topology T, is stronger than both 1 and T, . 0

"

Many spaces have two special topologies, the 'weak!
topology and the 'strong' topology, which play an important
role in the theory of such spaces:

Given a set X with two topologies T, and T, it can
happen that neither topology is stronger than the other: in
Example 2.3, T, % Ty and Tz ¢ Ty » SO that neither T, nor
T4 is stronger.

If H=X\G where G 1is an open subset of the topol-
ogical space X, we say that H is closed. A set can be

both open and closed. In Example 2.1 every element of
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Tt 1is both open and closed. There is a connection between
closed sets and limits of sequences of elements which is
discussed in Chapter 3 (see Theorem 3.2).

In Example 2.2 the topology on 'Rl

was defined by means
of special sets, namely sets of the form (a,b). We noy gener-

alize this approach.:

DEFINITION 2.2. Let: X be a topological space with topology
T . A set Nx c X 1is a neighbourhood (in the topology t) of
a point x eX if.there is a set G e T such that xeGeN .
A collection Bx of neighbourhoods of a point‘ x is called

a base of neighbourhoods (in the topology 1) of X ,if,=Bxf

is non-empty and if for :every neighbourhood Vx of x there
exists” Nx €B ~such that Nx ch . A family B = {Bx: x.e X}
of bases of neighbourhoods is called a base of neighbourhoods
for the topology Tt . :0O-

REMARK 2.1. The subscript x on N - in Definition 2.2
is not necessary and may be dropped, but it is often a
helpful reminder of the link with x. [0

-
REMARK 2.2. It follows immediately from Definition 2.2 that
a non-empty open set is a neighbourhood of each of the points
that it contains. [ :

REMARK 2.3.° There' are several slightly different definitions
of neighbourhoods and bases in the literature. Sometimes a .
neighboprhoo& of x 1is defined to be an open set containing
x , and a base B for a topology> Tt is defined to be a sub-
family of 1t  such that for each x and each neighbourhood
U of x there exists 'V ef satisfying xeVecU . 0O

-, There may be more‘than one base for a topology as is
shown by:

EXAMPLE 2.4. For R!

(with the usual topology) one base of
neighbourhdéods - B' = {B;} is given by ' :

B; = {[a,b): a <x <b}



