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Preface

This book is an introduction to nonlinear mechanics for plates. The non-linearities in play may be
of geometric origin, due to finite deformations, or of material origin, arising from the hyperelastic
nonlinear constitutive laws.

-Why the nonlinear framework?

The nonlinear framework applies itself naturally to problems where plates undergo finite strains,
finite displacements or finite rotations, for example the bending or forming of a metal sheet.

The nonlinear theory is also found to be necessary to account for the phenomenon of plate
buckling (in statics) or of plate instability (in dynamics), even if the pre-critical strains and
displacements are not significant. Indeed, we cannot restrict ourselves to a purely linear theory
where equations are linearized too soon, but must instead carry out (at least partially) a non-linear
analysis prior to linearizing the equations. This is a longer process but it is the only one that makes
it possible to obtain the terms governing the buckling.

Synopsis of the book

1. In this book we will study three plate models. From the point of view of the kinematics
hypothesis, these range from the most general to the most restrictive; from the point of
view of the formulation of the model, these range from the simplest to the most complex:

(a) The Cosserat plate model, whose kinematics is defined by the displacement field of
the mid-surface and the field of the director vector, which is a priori arbitrary and
independent of the displacement field of the mid-surface.

(b) The Reissner-Mindlin plate model, where the director vector is constrained to be a
unit vector.

(¢) The Kirchhoff-Love plate model, where the director vector must be both of unit length
as well as orthogonal to the deformed mid-surface.

While the explanation clearly demonstrates how the models are related to each other, it
also allows the reader to approach each model independently, without referring to the other
models.

The governing equations of motion and the force boundary conditions will be obtained by
means of the principle of virtual power. Interestingly, it can be seen that the results obtained
at this stage are not subject to any hypothesis other than the kinematics assumption inherent
to each plate model. Consequently, they are valid regardless of the amplitude of motion or
the constitutive material. Results that depend on the material are presented separately.

2. The constitutive laws for plates will be established for hyperelastic materials. We will
exclude more complicated behaviors such as elastoplasticity in finite deformations,
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knowing that the difficulties related to these behaviors already exist in the 3D framework
and are not specific to plate models.

Having obtained the constitutive laws, we will survey the whole set of equations and verify
that there are as many equations as unknowns. This also is the time for us to review the
different hypotheses adopted at different stages in the plate formulations.

3. We will finally study the linearization of the Kirchhoff-Love plate theory. The linear
equations that result from this enable the study of the vibration of plates around a
reference configuration that may be pre-stressed. Applied to the static case, the linearized
equations also enable us to solve the problem of the buckling of plates.

It will be seen that several important subjects are not touched upon in this book. For
example, we do not study the constitutive laws for orthotropic plates or stratified plates, finite
elastoplastic deformations of plates, or plate finite elements, which are in themselves a large
research domain. Nonetheless, the author hopes that this book may offer readers a solid
foundation which will allow them to then venture further into the world of more complex
nonlinear plate models. Furthermore, this book will also serve as a good introduction for those
who wish to study shell models, as the tensor tools used are exactly the same and as the
formulation of these theories is similar in all points to plate theory.

Finally, the author would like to thank Ms. Akuia Puapnis for her help with the English
version of this book.

Anh LE van
Nantes, France
March 2017
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Fundamentals of Tensor Theory

This chapter summarizes the definitions and results of the tensor operations that are used in plate
theory. It can be divided into two parts:

1. Tensor algebra, where only algebraic operations such as addition and multiplication come
into play.

2. Tensor analysis, which also involves the concept of derivatives.
The results are reviewed here without the proofs being worked out. For a detailed presentation,
the readers are referred to mathematical works dedicated to tensor theory.

1.1. Tensor algebra

Let us consider a 3-dimensional Euclidean vector space E, endowed with the usual scalar product
(a,b) — a.b and the Euclidian norm ||.|. A basis (g, g,,g3), not necessarily orthonormal, is
chosen beforehand for E.

1.1.1. Contravariant and covariant components of a vector

Let u be a vector in E. The components of u in the basis (g;,g,, ;) are denoted by u',#?, 1

and we write using the Einstein summation convention over any repeated index; here,

the index i varies from 1 to 3. As the basis (g;, g, &3) is fixed, the vector u is determined by the

coefficients u', u?, 1>,

On the other hand, vector u is also determined by the three coefficients i€{1,2,3}
Indeed, we have

Vie(1,2,3}u; = ug = (ug).g = u'(g.g) [1.1]
By writing
Vi, je l1,2,3}, [1.2]

we can rewrite equation[1.1] in matrix form:

uy 811 &12 813 u'
uy v =| g g2 g |4 W [1.3]
u3 831 832 833 u?

The 3 x 3 matrix [g, ] with components g;j,i,j € {1,2,3}, is symmetrical. It is invertible
because (g,, g,, &) is a basis and, therefore, either of the triplets (u', u?, 1) or (u;, uz, u3) allows
us to determination of the other one.
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Definitions. [1.4]

— The contravariant components of the vector u in the basis (g;, g,, g;) are the components

u',u?,1 in this basis. They are such that

— The covariant components of the vector u in the basis (g;, g, g;) are the coefficients

uy, us, u3 defined by .

The notation convention with superscripts and subscripts (upper and lower indices) is
systematically adopted in tensor theory. The advantage of this convention, as will be seen later
on, is that it allows formulae to be easily read and systematically written.

Let us illustrate the concept of contravariant and covariant components in the two-dimensional
space R2. We choose a basis (g,, g,) for R?, formed of two unit vectors (||g;|| = |lg,|l = 1), and
we consider any vector u. In Fig. 1.1:

— the contravariant components u', 4% of vector u are the oblique components along g, and
82-

— the covariant components u, u, are the orthogonal projection-value measures for u along
g and g,.

81
o

Figure 1.1: Illustration in R? of the contravariant and covariant components of a vector u

Using this example, we can see that the contravariant and covariant components are usually
distinct. According to Eq. [1.3], the necessary and sufficient condition for them to be identical is
that the matrix [g_ ] be equal to the identity matrix. That is, (g,, g, 83) is orthonormal.

Theorem. Let u be a vector with contravariant components u' and covariant components u;; let
v be a vector with contravariant components V' and covariant components v;. The scalar product
of u and v is expressed by

15

1.1.2. Dual basis

Notation. The components of the inverted matrix for [g, ] are designated by g'/:

Vije(1,2,3, |g7=(le.1"),=¢"| & |g'a;=0, and gug’=9]

: =1 ifi=j
i 1 )1 ? J
where & (also written as §;;) is Kronecker’s symbol { 5= 0 otherwise °
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Theorem and definition. The family of vectors denoted by | (g', g2, g°) | and defined by

g=g"g;| o |g=gg [1.6]

is a basis of E. It is also called the dual basis of (g,, g, g3), as opposed to the basis (g, g, 3),
which is called the primal basis.

It must be pointed out that the dual basis is constructed via the following chain

primal basis . . N dual basis
(81,82, 85) matrix [g. ] —  inverted matrix [g ] (g',gz,g:’)

The following theorem gives another characterization for the dual base in addition to definition
[1.6].

Theorem.

— The vectors of the primal and dual bases are orthogonal:

vi,j€{1,2,3),|g.8" = &/

— Conversely, any triplet of vectors (a', a%, a*) which verifies g;.a’ = 6f is identical to the
dual basis: ¥i € {1,2,3},a' = g'.

The following relationship is homologous to [1.2]:

Theorem.

In general, the dual basis differs from the primal basis, except for the following special case:

| Theorem. The primal basis is orthonormal < the dual basis is identical to the primal basis.
1.1.3. Different representations of a vector

Theorem.

— The following relationships exist between the contravariant and covariant components of
a vector u:

Vi€ (1,2,3),| u; = giju’ |, conversely | o' = g"u;

We thus lower or raise the indices using the matrices g;; and g"/.

— The following relationship is homologous to #; = u.g;:

Vie [1.2,3},
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Theorem and definition. A vector can be expressed in either the primal basis or in the dual
basis, as follows:

u=ug =ug [1.7]
These two forms are called the contravariant and the covariant representations of 1.

From the previous theorem, we can also write u = (u.g)g; = (1.g,)g'.

Theorem. The scalar product between vectors u and v may be written in different forms

wv = u'v; = ' = gVt = gluy; [1.8]

1.1.4. Results related to the orientation of the 3D space

The earlier results, written in three-dimensional space, may be generalized in the case of a space
with n-dimensions (n being finite), using obvious notation changes. On the contrary, the results
discussed in this section are only applicable to a 3-dimensional space.

As the space E is 3-dimensional, we can orient it and define a vector product (cross product)
in it. We then obtain the following results related to a vector or mixed product.

Theorem.

g X% = (2,888 | 82X =(8.8.8)8" | |8 X8 =(@.28.8) &
Conversely g' x g’ = (g'.g%.8") g | |£ x =g ) g || xg =@ . &)
[1.9]

The vectors g,, g, are orthogonal to vector g’, but they are not, in general, orthogonal to
vector g, Fig. 1.2,

81 g

Figure 1.2: Vector product of two vectors of the primal basis

Theorem.

1 = 1 1.10
€.g.g) T [1.10]

Therefore, the primal and dual bases have the same orientation.



