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PREFACE TO THE THIRD EDITION

Some terms used in the title of this work need to be defined and explained
at the outset.

Architectural Science

The term ‘building science’ has been well established since at least 1944,
when Geeson published his book of that title (English Universities Press)
and D. A. G. Reed’s book of the same title was published by Longmans. The
subject became important after the 1958 Oxford Conference of the RIBA,
when it formally became an important part of architectural education.

The same vyear, the term ‘Architectural Science’ was introduced by
H. J. Cowan, the first professor of that designation at Sydney University,
expressing his intention of providing the scientific basis for architectural
design. Initially his main concern was the science of materials, construction
and structures. He started the publication of the quarterly Architectural Science
Review and founded the Architectural Science Association (ANZAScA) as pri-
marily an informal grouping of teachers of the subject. Originally this associa-
tion was concerned with the building fabric, with the physical science aspects
of architectural design, later extending the field to include the science of
indoor environments, thermal, acoustic and lighting. During my presidency
(1982) we included the relevant areas of social sciences.

Subsequently the use of energy and resources in building became the main
concern.

Sustainability

In 1972, the United Nations Conference (in Stockholm) on the Human
Environment led to the Brundtland Report, and the 1992 UN Conference on
Environment and Development (UNCED), the World Summit, in Rio de Janeiro.
This had produced the ‘Rio Declaration’ and the Agenda 21, a programme for
the twenty-first century. The extreme green lobby was vociferous in opposing
any development, as they thought this to be harmful for the natural environ-
ment. However, the third world lobby demanded development, as their right to
‘catch up” with the developed world. Finally the consensus has emerged that
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development is needed and is acceptable as long as it is sustainable. This was
defined by Brundtland as 'development that meets the needs of the present
without compromising the ability of future generations to meet their own need.’

This became recognised and adapted by (inter alia) the International Union of
Architects (IUA) Congress in Chicago (1993) and was subsequently endorsed
by most national architectural bodies.

Sustainable design

Since then, unfortunately, some extreme exponents of post-modernism came to
considerarchitecture purely as an art-form, denying Sullivan’s tenet: ‘form follows
function’. This has led to the most extravagant, unorthodox, contorted and crazy
buildings. The odd few of these can be tolerated here and there in an existing
sober and solid urban context, but heaven forbid this becoming the ‘norm’. It is
pure formalism, at the expense of function and environmental decency.

These became dominant in the glossies, the current fashion in architecture.
Many consider ‘architectural science’ as an oxymoron, some suggesting that
in architectural education it is counter-productive, curbing or even destroy-
ing any imaginative talent of students. It also gives fuel to the erroneous but
general belief of the broad public, that architecture is a luxury, that it is irrel-
evant to ‘real life’, to building.

It is contradictory and almost schizophrenic (if not fraudulent) that at the
same time many such professionals claim that what they produce is sus-
tainable architecture, sustainable design. Here it is suggested that without
science, architecture cannot be sustainable. Science is not opposed to
design, it does not compete with or replace design, but it is part and parcel of
it. The designer can only exercise his/her imagination if the physical basis is
understood. Scientific understanding should permeate the intuitive, inventive
design. Science can give valuable design tools but it can also provide check-
ing tools for use as the design develops.

As far as architecture itself is considered, | rather like the ‘cocktail shaker’
analogy. | know that analogia non probat, that analogy is not a proof, but it
is usefully indicative. Science is one of the inputs into the shaker, along with
materials, construction and structures studies as well as some social sci-
ences. In a cocktail the individual inputs, such as basil, chilli or bitters, may not
be enjoyable, but they are essential ingredients. The design studio (and design
practice) are the cocktail shakers. The technique of shaking, the rhythm, the
movement, the often associated dance-steps, possibly even some singing
are unimportant, as long as all the ingredients are there and are well shaken.

Some years ago, the (then) head of a school of architecture where
Architectural Science has been abolished as a subject, in response to my
query, explained that there is no one to teach it and there is no textbook to
present the relevant knowledge in a rigorous and disciplined manner. This gave
me the first impetus some ten years ago to attempt to produce such a book.
| made use of many of my lecture notes accumulated over a teaching career
of some 30 years, but supplementing and extending these with much new
matter, with recent developments. What follows is the result of this attempt.



INTRODUCTION

Four chains of thought led to the idea of this book and to the definition of its
content:

1

It can no longer be disputed that the resources of this Earth are finite, that
its capacity to absorb our wastes is limited, that if we (as a species) want
to survive, we cannot continue our ruthless exploitation of the environ-
ment. Where our actions would affect the environment, we must act in a
sustainable manner. There are many good books that deal with the need
for sustainability (e.g. Vale and Vale, 1991; Farmer, 1999; Roaf et al., 2001;
Smith, 2001, Beggs, 2002, Brophy and Lewis, 2011). This book assumes
that the reader is in agreement with these tenets and needs no further
persuasion.

Architecture is the art and science of building. There exists a large lit-
erature on architecture as an art, on the cultural and social significance of
architecture — there is no need to discuss these issues here.

The term ‘bioclimatic architecture’ was coined by Victor Olgyay in the early
1950s and fully explained in his book, Design with Climate (1963). He syn-
thesised elements of human physiology, climatology and building physics,
with a strong advocacy of architectural regionalism and of designing in
sympathy with the environment. In many ways he can be considered an
important progenitor of what we now call ‘sustainable architecture’.
Architecture, as a profession, is involved in huge investments of money
and resources. Our professional responsibility is great, not only to our
clients and to society, but also for sustainable development. Many excel-
lent books and other publications deal with sustainable development in
qualitative terms. However, professional responsibility demands expertise
and competence. It is in this narrow area where this work intends to sup-
plement the existing literature.

This book is intended to give an introduction to architectural science, to
provide an understanding of the physical phenomena we are to deal with and
to provide the tools for realising the many good intentions. Many projects
in recent times claim to constitute sustainable development, to be sustain-
able architecture. But are they really green or sustainable? Some new terms
have started appearing in the literature, such as ‘greenwash’ — meaning that
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a conventional building is designed and then claimed to be ‘green’. Or ‘pure
rhetoric — no substance’, with the same meaning.

My hope is that after absorbing the contents of this modest work, the
reader will be able to answer this question. After all, the main aim of any edu-
cation is to develop a critical faculty.

Building environments affect us through our sensory organs:

1 the eye, i.e. vision, a condition of which is light and lighting; the aim is to
ensure visual comfort but also to facilitate visual performance;

2 the ear, i.e. hearing: appropriate conditions for listening to wanted sound
must be ensured, but also the elimination (or control) of unwanted sound:
noise;

3 thermal sensors, located over the whole body surface, in the skin; this
is not just a sensory channel, as the body itself produces heat and has a
number of adjustment mechanisms but it can function only within a fairly
narrow range of temperatures and only an even narrower range would be
perceived as comfortable. Thermal conditions appropriate for human well-
being must be ensured.

What is important for the designer is to be able to control the indoor envi-
ronmental conditions: heat, light and sound. Reyner Banham (1969) in his
Architecture of the Well-tempered Environment postulated that comfort-
able conditions can be provided by a building itself (passive control) or by
the use of energy (active control), and that if we had an unlimited supply
of energy, we could ensure comfort even without a building. In most real
cases, it is a mixture (or synergy) of the two kinds of control we would be
relying on.

In this day and age, when it is realised that our traditional energy sources
(coal, oil, gas) are finite and their rapidly increasing use has serious envi-
ronmental consequences (CO, emissions, global warming, as well as local
atmospheric pollution), it should be the designer's aim to ensure the required
indoor conditions with little or no use of energy, other than from ambient or
renewable sources.

Therefore the designer's task is:

1 to examine the given conditions (site conditions, climate, daylight, noise
climate);

2 to establish the limits of desirable or acceptable conditions (temperatures,
lighting and acceptable noise levels);

3 to attempt to control these variables (heat, light and sound) by passive
means (by the building itself) as far as practicable;

4 to provide for energy-based services (heating, cooling, electric lighting,
amplification or masking sound) only for the residual control task.

The building is not just a shelter, or a barrier against unwanted influences
(rain, wind, cold), but the building envelope should be considered a selective
filter. to exclude the unwanted influences, but admit the desirable and useful
ones, such as daylight, solar radiation in winter or natural ventilation.
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The book consists of four parts:

1 Heat: the thermal environment

2 Light: the luminous environment

3 Sound: the sonic environment

4 Resources: energy, water, materials

In each Part the relevant physical principles are reviewed, followed by a dis-
cussion of their relationship to humans (comfort and human requirements).
Then the control functions of the building (passive controls) are examined as
well as associated installations, energy-using ‘active’ controls. The empha-
sis is on how these can be considered in design. Part 1 (Heat) is the most
substantial, as the thermal behaviour of a building has the greatest effect on
energy use and sustainability and its design is fully the architect’'s responsi-
bility. In other areas there may be specialist consulting engineers to provide
assistance.

Each Part concludes with a series of data sheets relating to that Part,
together with some ‘methods sheets’, describing some calculation and
design procedures.
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SYMBOLS AND ABBREVIATIONS (Continued)

1 time hour Qe evaporative heat loss rate W
v velocity m/s Qi internal heat gain rate Y
vr volume flow rate (ventilation rate) m3/s, L/s Qs solar heat gain rate wW
vR vapour resistance MPa.s.m?/g Qv ventilation heat flow rate W
y year R resistance m2ZK/W
A area m?2 Fia_a air-to-air resistance m2KMW
AH absolute humidity g/kg R. cavity resistance mZK/W
ALT  solar altitude angle ° Rd radiation, radiated heat (from body) W
AZ| solar azimuth angle ° RH relative humidity %
C conductance W/m?K R, surface resistance m2K/W
Cd conduction, conducted heat W R internal surface resistance m2K/W
(from body) R,,  outside surface resistance mZK/W
CDD cooling degree-days Kd SD standard deviation
CoP  coefficient of performance = SET  standard effective temperature <
CPZ  control potential zone SH saturation point humidity a/kg
Cv convection, convected heat W S| Systéme International (of units)
(from body) T temperature °C

D daily total irradiation Wh/m? MJ/m? Th balance point (base~) temperature °C
D, daily total vertical irradiation Wh/m? MJ/m? TIL tilt angle @
DBT dry bulb temperature °C T, indoor temperature E
DD degree-days Kd Tn neutrality temperature °C
DEC  solar declination angle ° T, outdoor temperature °C
Dh degree-hours Kh T surface temperature °C
DPT  dew-point temperature °C T. sol-air temperature °C
DRT  dry resultant temperature L u air-to-air (thermal) transmittance W/m?2K
E radiant heat emission W \% volume m?
EnvT environmental temperature =tk VSA  vertical shadow angle N
ET*  new effective temperature °G WBT wet bulb temperature °C
Ev evaporation heat transfer (from body) W Y admittance W/m?2K
G global irradiance W/m?
GT globe temperature °C o absorptance, or thermal diffusivity -
H enthalpy (heat content) kJ/kg ) vapour permeability pug/m.s.Pa
HDD heating degree-days Kd € emittance -
H, latent heat content kJ/kg n efficiency -
Hg sensible heat content kd/kg 0 solar gain factor -
HSA  horizontal shadow angle ® 0, alternating solar gain factor -
Htg heating requirement (KWh) Wh K conductivity correction factor -
INC  angle of incidence e A conductivity W/m.K
Kd Kelvin days Kd n decrement factor -
Kh Kelvin hours Kh T vapour permeance ug/m?.s.Pa
L length (linear thermal bridges) m p density, or reflectance kg/m?3 or -
LAT  geographical latitude angle ° T transmittance -
M metabolic heat production W [0} time lag h
Mb body mass kg o Stefan-Boltzmann constant W/m2K*
MRT  mean radiant temperature 10T X sumof ... -
N number of air changes per hour - Ap pressure difference Pa
ORI orientation angle 2 AS rate of change in stored heat W
Q heat flux or heat flow rate W AT temperature difference, interval or K
Qc conduction heat flow rate W increment
SUBSCRIPTSTO G AND D
first b beam~ v vertical

d diffuse~ p _on plane p

r reflected~ for G only n normal to radiation
second h horizontal
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1.1 PHYSICS OF HEAT
1.1.1 Heat and temperature

Heat is a form of energy, contained in substances as molecular motion or
appearing as electromagnetic radiation in space. Energy is the ability or capac-
ity for doing work and it is measured in the same units. The derivation of this
unit from the basic MKS (m, kg, s) units in the Sl (Systéme International) is
quite simple and logical, as shown in Table 1.1.

Temperature (T) is the symptom of the presence of heat in a substance.
The Celsius scale is based on water: its freezing point taken as 0°C and
its boiling point (at normal atmospheric pressure) as 100°C. The Kelvin
scale starts with the 'absolute zero’, the total absence of heat. Thus 0°C =
273.15°K. The temperature interval is the same in both scales. By conven-
tion, a point on the scale is denoted °C (degree Celsius) but the notation for
a temperature difference or interval is K (Kelvin), which is a certain length of
the scale, without specifying where it is on the overall scale (Fig. 1.1). Thus
40°C-10°C = 30 K, and similarly 65°C-35°C is 30 K but 15°C, as a point on the
scale, is 288.15°K.

The specific heat concept provides the connection between heat and tem-
perature. This is the quantity of heat required to elevate the temperature
of unit mass of a substance by one degree, thus it is measured in units of
J/kg.K. Its magnitude is different for different materials and it varies between
100 and 800 J/kg.K for metals, 800-1200 J/kg.K for masonry materials (brick,
concrete) to water, which has the highest value of all common substances:
4176 J/kg.K (see Data sheet D.1.1).

Table 1.1 Derivation of composite Sl units for thermal quantities

length m (metre)

mass kg (kilogram)

time S (second)

velocity, speed m/s That is unit length movement in unit time, the

everyday unit is km/h, which is 1000m / 3600 s =
0.278 m/s or conversely: 1 m/s = 3.6 km/h

acceleration m/s? That is unit velocity increase in unit time: (m/s)/s

force kg.m/s? That which gives unit acceleration to unit mass
called newton (N)

work, energy ka.m?/s?  Unit work is done when unit force is acting over

unit length, i.e. N X m called joule (J)
power, energy flow kg.m?s®  unit energy flow in unit time or unit work done in
rate unit time, i.e. J / s called watt (W)
pressure, stress kg/m.s?  unit force acting on unit area (kg.m/s?)/m? i.e.
N/ m? called pascal (Pa)

Note: Sl unit symbols, derived from personal names, are always capitalised.
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EXAMPLE 1.1 SPECIFIC HEAT AND TEMPERATURE

Given 0.5 L (= 0.5 kg) of water at 20°C in an electric jug with an 800 W
immersion heater element (efficiency: 1.0 or 100%). How long will it take to
bring it to the boil?

requirement: 0.5 kg X 4176 J/kg.K X (100 - 20) K = 167 040 J

heat input 800 W, i.e. 800 J/s, thus the time required is

167 040 J / 800 J/s =~ 208 s » 3.5 minutes.

Latent heat of a substance is the amount of heat (energy) absorbed by unit
mass of the substance at change of state (from solid to liquid or liquid to
gaseous) without any change in temperature. This is measured in kJ/kg, e.g.
for water:
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the latent heat of fusion (ice to water) at 0°C
the latent heat of evaporation at 100°C
at about 18°C

335 kJ/kg (= J/g)
2261 kJ/kg
2400 kJ/kg
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At a change of state in the reverse direction, the same amount of heat is
released.

Thermodynamics is the science of the flow of heat and of its relationship
to mechanical work.

The first law of thermodynamics is the principle of conservation of energy.
Energy cannot be created or destroyed (except in sub-atomic processes), but
only converted from one form to another. Heat and work are interconvertible.
In any system, the energy output must equal the energy input, unless there
is a +/— storage component.

The second law of thermodynamics states that heat (or energy) trans-
fer can take place spontaneously in one direction only: from a hotter to a
cooler body, or generally from a higher to a lower grade state (same as water
flow will take place only downhill). Only with an external energy input can a
machine deliver heat in the opposite direction (water will move upwards only
if it is pumped).Temperature can only be increased by energy (work) input,
e.g. by a heat pump (see Fig. 1.98 on p. 85). Any machine to perform work
must have an energy source and a sink, i.e. energy must flow through the
machine: only part of this flow can be turned into work.

Heat flow from a high to a low temperature zone can take place in three
forms: conduction, convection and radiation. The magnitude of any such flow
can be measured in two ways:

1 as heat flow rate (Q), or heat flux, i.e. the total flow in unit time through
a defined area of a body or space, or within a defined system, in units of
J/s, which is a watt (W). (The most persistent archaic energy flow rate
or power unit is the horsepower, but in fully metric countries even car
engines are now rated in terms of kW.)

2 as heat flux density (or density of heat flow rate), i.e. the rate of heat flow
through unit area of a body or space, in W/m?2. The multiple kW (kilowatt =
1000 W) is often used for both quantities. (The term ‘density’ as used here
is analogous with e.g. population density, i.e. people per unit area, or with
surface density, i.e. kg mass per unit area of a wall or other building element.)



