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Yogi Berra is quoted,

“If you come to a fork in the road take it.”
With Mary Ellen’s agreement,
following this guidance
I found myself at the
dawning of weak form CFD



Preface

Fluid dynamics, with heat/mass transport, is the engineering sciences discipline wherein
explicit nonlinearity fundamentally challenges analytical theorization. Prior to digital com-
puter emergence, hence computational fluid dvnamics (CFD), the subject of this text, the
regularly revised monograph Boundary Layer Theory, Schlichting (1951, 1955, 1960, 1968,
1979) archived Navier-Stokes (NS) knowledge analytical progress. Updates focused on
advances in characterizing turbulence, the continuum phenomenon permeating genuine fluid
dynamics. The classic companion for NS simplified to the hyperbolic form, which omits vis-
cous-turbulent phenomena while admitting non-smooth solutions, is Courant et al. (1928).

The analytical subject of CFD is rigorously addressed herein via what has matured as
optimal modified continuous Galerkin weak form theory. The predecessor burst onto the
CFD scene in the early 1970s disguised as the weighted-residuals finite element (FE) alter-
native to finite difference (FD) CFD. Weighted-residuals obvious connections to variational
calculus prompted mathematical formalization, whence emerged continuum weak form
theory. It is this theory, discretely implemented, herein validated precisely pertinent to non-
linear(!) NS, and trime averaged and space filtered alternatives, elliptic boundary value
(EBV) partial ditferential equation (PDE) systems.

Pioneering weighted-residuals CFD solutions proved reasonable compared with expecta-
tion and comparative data. Reasonable was soon replaced with rigor, first via laminar and
turbulent boundary layer (BL) a posteriori data which validated linear weak form theory-
predicted oprimal performance within the discrete peer group, Soliman and Baker (1981a.b).
Thus matured NS weak form theorization in continuum form, whence discrete implementa-
tion became a post-theory decision. As thoroughly detailed herein, the FE trial space basis
choice is validated optimal in classic and weak form theory-identified norms. Further, this
decision uniquely retains calculus and vector field theory supporting computable form gener-
ation precision.

Text focus is derivation and thorough quantitative assessment of optimal modified con-
tinuous Galerkin CFD algorithms for incompressible laminar-thermal NS plus the manipu-
lations for turbulent and transitional flow prediction. Optimality accrues to continuum
alteration of classic text NS PDE statements via rigorously derived nonlinear differential
terms. Referenced as modified PDE (mPDE) theory, wide ranging a posteriori data quanti-
tatively validate the theory-generated dispersive/anti-dispersive operands annihilate signifi-
cant order discrete approximation error in space and time, leading to monotone solution
prediction without an artificial diffusion operator.



Xiv Preface

Weak formulations in the computational engineering sciences, especially fluid dynamics,
have a storied history of international contributions. Your author’s early 1970s participa-
tion culminated in leaving the Bell Aerospace principal research scientist position in 1975
to initiate the University of Tennessee (UT) Engineering Science graduate program focus-
ing in weak form CFD. UT CFD Laboratory, formed in 1982, fostered collaboration
among aerospace research technical colleagues, graduate students, commercial industry and
the UT Joint Institute for Computational Science (JICS), upon its founding in 1993,

As successor to the 1983 text Finite Element Computational Fluid Mechanics, this book
organizes the ensuing three decades of research generating theory advances leading to rigor-
ous, efficient, optimal performance Galerkin CFD algorithm identification. The book is orga-
nized into 10 chapters, Chapter | introducing the subject content in perspective with an
historical overview. Since postgraduate level mathematics are involved, Chapter 2 provides
pertinent subject content overview (o assist the reader in gaining the appropriate analytical
dexterity. Chapters 3 and 4 document weak interaction aerodynamics, the union of potential
flow NS with Reynolds-ordered BL theory. laminar and time averaged turbulent, with exten-
sion to parabolic NS (PNS) with PNS-ordered full Reynolds stress tensor algebraic closure.
Linearity of the potential EBV enables a thoroughly formal derivation of continuum weak
form theory via bilinear forms. Content concludes with optimal algorithm identification with
an isentropic (weak) shock validation. An Appendix extends the theory to a Reynolds-
ordered turbulent hypersonic shock layer aerothermodynamics formulation (PRaNS).

Chapter 5 presents a thorough derivation of mPDE theory generating the weak form
optimal performance modified Galerkin algorithm. in time for linear through cubic trial
space bases, and in space for optimally efficient linear basis. Theory assertion of optimality
within the discrete peer group is quantitatively verified/validated. Chapter 6 validates the
algorithm for laminar-thermal NS PDE system arranged to well-posed using vector field
theory. Chapter 7 complements content with algorithm validation for the classic state varia-
ble laminar-thermal NS system, rendered well-posed via pressure projection theory with a
genuine pressure weak formulation pertinent to multiply-connected domains. Content
derives/validates a Galerkin theory for radiosity theory replacing Stephan—Boltzmann, also
an ALE algorithm for thermo-solid-fluid interaction with melting and solidification.

Chapter 8 directly extends Chapter 7 content to time averaged NS (RaNS) for single
Reynolds stress tensor closure models, standard deviatoric and full Reynolds stress model
(RSM). Chapter 9 addresses space filtered NS (LES) with focus the Reynolds stress quad-
ruple formally generated by filtering. Manipulations rendering RaNS and LES EBV state-
ments identical lead to closure summary via subgrid stress (SGS) tensor modeling. The
alternative completely model-free closure (arLES) for the full tensor quadruple is derived
via union of rational LES (RLES) and mPDE theories. Thus is generated an O(1, &>, &)
member state variable for gaussian filter uniform measure & a priori defining unresolved
scale threshold. Extended to bounded domains, arLES EBV system including boundary
convolution error (BCE) integrals is rendered well-posed via derivation of non-homoge-
neous Dirichlet BCs for the complete state variable. The arLES theory is validated applica-
ble V Re, generates d-ordered resolved-unresolved scale diagnostic a posteriori data, and
confirms model-free prediction of laminar-turbulent wall attached resolved scale velocity
transition.

Chapter 10 collates text content under the US National Academy of Sciences (NAS)
large scale computing identification “Verification, Validation, Uncertainly Quantification™



Preface XV

(VVUQ). Observed in context is replacement of legacy CFD algorithm numerical diffusion
formulations with proven mPDE operand superior performance. More fundamental is the
VRe model-free arLES theory specific responses to NAS-cited requirements:

e error quantification

e « posteriori error estimation

e crror hounding

e spectral content accuracy extremization

e phase selective dispersion error annihilation

e monotone solution generation

e error extremization optimal mesh quantification

¢ mesh resolution inadequacy measure

e efficient optimal radiosity theory with error bound

which in summary address in completeness VVUQ.

Your author must acknowledge that the content of this text is the result of collaborative
activities conducted over three decades under the umbrella of the UT CFD Lab, especially
that resulting from PhD research. Content herein is originally published in the dissertations
of Doctors Soliman (1978), Kim (1987), Noronha (1988), lannelli (1991), Freels (1992),
Williams (1993), Roy (1994), Wong (1995), Zhang (1995), Chaffin (1997), Kolesnikov
(2000), Barton (2000), Chambers (2000), Grubert (2006), Sahu (2006) and Sekachev
(2013). the last one completed in the third year of my retirement. During 1977-2006 the
UT CFD Lab research code enabling weak form theorization transition to a posteriori data
generation was the brainchild of Mr Joe Orzechowski, the maturation of a CFD technical
association initiated in 1971 at Bell Aerospace. The unsteady fully 3-D a posteriori data
validating @rLES theory was generated using the open source, massively parallel PICMSS
(Parallel Interoperable Computational Mechanics Systems Simulator) platform, a CFD Lab
collaborative development led by Dr Kwai Wong, Research Scientist at JICS.

Teams get the job done — this text is proof positive.

A. J. Baker
Knoxville, TN
November 2013
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Notations

a expansion coefficient; speed of sound: characteristics coefficient
A plane area; 1-D FE matrix prefix; coefficient

AD approximate deconvolution

ADBC  approximate deconvolution boundary condition algorithm

AF approximate factorization algorithm

ALE arbitrary-lagrangian-eulerian algorithm

[A] factored global matrix, RLES theory auxiliary problem matrix operator
arLES  essentially analytic LES closure theory

b coefficient; boundary condition subscript

{b} global data matrix

B 2-D FE matrix prefix

B(e) bilinear form

B body force

BC boundary condition

BCE boundary commutation error integral

BHE borehole heat exchanger

BiSec bisected borehole heat exchanger

BL boundary layer

¢ coefficient; specific heat

c phase velocity vector

C 3-D matrix prefix: coefficient; chord: Courant number = UA#/Ax
Cs Cross stress tensor

Gy aerodynamic pressure coefficient, = p/pu’/2

Cs Smagorinsky constant, its generalization

CFD computational fluid dynamics

CFL Courant number

Cy skin friction coefficient

CF/2 boundary layer skin friction coefficient

CNFD  Crank—Nicolson finite difference

cSs control surface

cv control volume

d(e) ordinary derivative, differential element

d coefficient; FE matrix basis degree label, RSM distance; characteristics coefficient

D binary diffusion coefficient: diagonal matrix



XX Notations

D dimensionality, non-D diffusion coefficient = At/Pah®

D(e) differential definition

D(e) substantial derivative

D™(s) modified substantial derivative

DES detached eddy simulation

DE conservation of energy PDE

DG discontinuous Galerkin weak form theory

DM conservation of mass PDE

DP conservation of momentum PDE

DY conservation of species mass fraction PDE

D(u, P) NS full stress tensor, = —VP + (2/Re)V- S(u)

diag[e] diagonal matrix

[DIFF]  laplacian diffusion matrix

DNS direct numerical simulation

e specific internal energy; element-dependent (subscript)

e() error

N continuum approximation error

¢ discrete approximation error

Sk alternating tensor

exr. curl alternator on n=2

EBV elliptic boundary value

Ec Eckert number

etay; coordinate transformation data

E thermal energy: energy semi-norm (subscript)

Ji flux vector

I normal flux

fle) function of the argument

Sivl, €)  radiation view factor

F(e) Fourier transform

{F} weak form terminal algebraic statement

F(k—1i) Lambert’s cosine law viewfactor

FD finite difference

FE finite element

FV finite volume

f efflux vector on 0Q

F applied force

g gravity magnitude; amplification factor: spatial filter function; characteristics
enthalpy ratio

g gravity

Gr Grashoff number = gpATL /W

G Gebhart viewfactor

GHP ground source heat pump

GLS Galerkin least squares algorithm

GWS Galerkin weak statement

h mesh measure; discrete (superscript), heat transfer coefficient

H boundary layer shape factor



Notations

Xxi

>
<

S aka

=Ea ol
v~ -

~
=
=

[m]
m;

M

M;

M]
Ma
mGWS
mPDE
mODE
MLT

n-D

n
N
N
NC
NWM
NWR
NS
{Nel
O(e)

Gauss quadrature weight: Hilbert space

truncated Taylor series higher order terms
summation index: mesh node

unit vector parallel to x

discrete matrix summation index, identity matrix

if and only if

initial-elliptic boundary value

summation index, mesh node

unit vector parallel to y

discrete matrix summation index

coordinate transformation jacobian

matrix statement jacobian

thermal conductivity; basis degree: index: diffusion coefficient
element of the [DIFF] matrix

average value of conductivity

unit vector parallel to z

discrete matrix summation index

element length: summation index

differential operator on JQ

reference length scale

discrete matrix summation index

differential operator on Q

Leonard stress tensor

large eddy simulation, convolved Navier—Stokes PDEs
non-D wavenumber = xh, integer

mass matrix

point mass; discrete matrix summation index
particle system mass: domain matrix prefix; elements in Q"
molecular mass

mPDE theory altered mass matrix

Mach number

optimal modified Galerkin weak form

modified partial differential equation

modified ordinary differential equation

mixing length theory

index: normal subscript; dimension of domain Q: integer
n-dimensional, | < n <3

outward pointing unit vector normal to JQ
Neumann BC matrix prefix

summation termination; approximation (superscript)
natural coordinate basis

near wall modeling LES BCs

near wall resolution LES algorithm

Navier—Stokes

finite element basis of degree k

order of argument (=)
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Xxii

P pressure

P kinematic pressure

P Gauss quadrature order

P linear momentum

Pa placeholder for non-D groups Re. Pr, Gr, Ec
{P} intermediate computed matrix

PDE partial differential equation

Pe Peclet number = RePr

PNS parabolic Navier—Stokes

PRaNS  hypersonic parabolic Reynolds-averaged Navier—Stokes
Pr Prandtl number = povc,/k

pr non-uniform mesh progression ratio

q generalized dependent variable

q heat flux vector

0] discretized dependent variable; heat added
{0} nodal coefficient column matrix

r reference state subscript; radius

R perfect gas constant, temperature degrees Rankine
R radiosity

R universal gas constant

Ry Reynolds subfilter scale tensor

RaNS Reynolds-averaged Navier—Stokes

Re Reynolds number = UL/v

Re'! turbulent Reynolds number = o/ /v

Re* compressible turbulent BL similarity coordinate = pu.y/p
R euclidean space of dimension n

RSM Reynolds stress model

{RES} weak form terminal matrix statement residual
s source term on ; heat added

s unit vector tangent to JQ

S entropy

S filtered Stokes tensor dyadic

So matrix assembly operator

Siiik stencil assembly operator

{S} computational matrix

Sc Schmidt number = D/v

SESj subfilter scale tensor

SGS; subgrid scale tensor

St Stanton number = tU/L

SUPG Streamline upwind Petrov Galerkin

sym symmetric

1 time: turbulent (superscript)

T temperature

T(z) BHE conduit temperature distribution

TE Taylor series truncation error

TG Taylor Galerkin algorithm
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il

T

¥l
TWS
u

u
zﬁu}
Ui

U
uQ

s =l

Sl
~<+

R

=3
=
&

tensor product basis

surface traction vector

continuum approximate temperature solution
Taylor weak statement

displacement vector; velocity vector

velocity x component; speed

time averaged NS Reynolds stress tensor
Favre time averaged velocity

reference velocity scale

uncertainty quantification

discretized speed nodal value

velocity y component

group velocity, = Vo

LES theory scalar state variable closure vector
volume

verification, benchmarking, validation
verification, validation, uncertainty quantification
velocity

very large eddy simulation

weight function; fin thickness; velocity z component
weight; work done by system

weak form

weighted residuals

weak statement

cartesian coordinate, coordinate system | <i<n
transformed local coordinate

discrete cartesian coordinate

displacement; cartesian coordinate
incompressible turbulent BL similarity coordinate = u y/v
mass fraction; discrete cartesian coordinate
cartesian coordinate

thickness ratio; discrete cartesian coordinate
gradient differential operator

laplacian operator

ordinary derivative

partial derivative

scalar (number)

column matrix

row matrix

square matrix

diagonal square matrix

norm

union (non-overlapping sum)

intersection

matrix determinant

denotes “for all”



xXiv Notations

€ inclusion

C belongs to

3 complex conjugate multiplication

® matrix tensor product

o coefficient, thermal diffusivity ratio

6 absolute temperature; coefficient

Y specific heat ratio, coefficient, gaussian filter shape factor

o) boundary layer thickness, coefficient, spatial filter measure, bow shock standoff
distance

o* boundary layer displacement thickness

8 Kronecker delta

A discrete increment

€ isotropic dissipation function. emissivity

€5 cartesian alternator

[0} velocity potential function

OC) trial space function

D potential function

Dp(x) test space
W, (x) trial space

¥ vector streamfunction

1 streamfunction scalar component

n transform space, wave vector angle

i tensor product coordinate system

K thermal diffusivity, Karman constant=0.435

k" turbulent thermal diffusivity

K wavenumber vector

Kp element of a square matrix

A Lagrange multiplier, wavelength, Lame’ parameter
H absolute viscosity

v kinematic viscosity

v kinematic eddy viscosity

n pi (3.1415926. . .)

0 TS implicitness factor, BL momentum thickness
(O] potential temperature = (7= T,,;)/(Tax — Tinin)

p density

G Stefan-Boltzmann coefficient =5.67 E-08 w/m’K*
do differential element on 9Q

% time scale

T Reynolds stress tensor

t}f deviatoric Reynolds stress tensor

) frequency, Van Driest damping function, vorticity scalar
Q vorticity vector

Q domain of differential equation

Q. finite element domain

Qf discretization of Q

0Q boundary of Q

L natural coordinate system
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