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Preface

Thermal mass plays an important role in building energy conservation and in
control of internal thermal comfort. It has been observed that it can be also greatly
assisted by the incorporation of building components with latent heat storage
capabilities. Phase change materials (PCMs) are one of the thermal control means
used today in building envelopes and in internal construction components. PCMs in
buildings can be utilized for many different purposes including reduction of space
conditioning energy consumption, thermal peak load shaving and shifting, local
temperature control in building envelope components, or improvement of overall
system durability. The scope of this book is to summarize and explain the most
important basics of PCM applications in building structures. Despite wide interest
in PCM-enhanced building technologies by researchers from industry and acade-
mia, engineers, architects, building developers, energy policy makers, code offi-
cials, and home owners, there is still a shortage of publications supporting design
and analysis in this field. In addition, the industry lacks sufficient technical data and
performance information for performance comparisons and development of new
technologies. At the same time, industry and government code bodies call for
adequate performance testing and rating standards.

Note that there are a large number of engineering and research publications focus
on PCMs as a major topic. However, even though PCM-enhanced building mate-
rials represent today the major market share for the PCM industry, there is still very
little engineering literature dedicated to this subject. Most recent publications treat
PCM-enhanced building components more from the material perspective (i.e., PCM
types, PCM packaging and encapsulation, PCM manufacturing processes, and
experimental analysis of PCMs from the chemical and thermal engineering points
of view), rather than focusing on the building component scale. As a result, analysis
of the PCM-enhanced building components is most often based on the very basic
material scale (only the PCM’s performance is examined), or a relatively inaccurate
whole building scale analysis is performed without taking into consideration that
PCM-enhanced envelopes are distinct building systems with their own properties
and performance characteristics.
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This work is almost exclusively focused on PCM applications as parts of
building envelopes and internal building fabric components. A variety of PCM
building products and applications are presented here, followed by subsequent
thermal and energy performance data. This publication also presents state-of-the-art
testing methods to enable thermal performance analysis of building envelope sys-
tems containing PCMs. In addition, numerical methods for dynamic thermal
analysis of PCM-enhanced building envelopes and whole buildings containing
PCM building envelope components are presented here.

This work was motivated by my desire to further the evolution and widespread
application of PCM-based building technologies. Since my goal was to reach a
wide audience, I organized this book so that it could be easily understood by
advanced undergraduate mechanical engineering students and first-year graduate
students of architecture and different engineering disciplines with sufficient thermal/
energy analysis and material engineering backgrounds. However, this publication
also offers an inclusive collection of references leading to more detailed technology
descriptions, performance data, and advanced analytical methods, which may be
helpful in research work. In my opinion, this publication is mainly intended for:

e Architects, building designers, home owners, and architectural students, who
I trust, will benefit from learning about the history of PCM applications in building
envelopes and will be able to study most common material configurations, and
PCM locations within a building.

e Building materials and systems developers. engineers. and researchers will find in
this book an overview of different types of PCMs, their physical characteristics,
commonly used PCM carriers, and a selection of commercially available building
products containing PCMs. This group of potential readers may also benefit from
the patent list associated with PCM-enhanced building products.

e Researchers, engineers, and code officials will learn from information presented
here about performance characteristics of the PCM-based building technologies
and descriptions of experimental methods used worldwide for testing of PCMs
and PCM-enhanced building products.

e Students, engineers, researchers, product developers, designers, home owners,
and finally, energy policy government officials should find the field performance
data generated during various whole-system and whole-building field experi-
ments worldwide very helpful.

e Lastly, students, engineers, researchers, and energy modelers should find useful
the chapter dedicated to numerical performance analysis of the PCM-enhanced
building envelopes and whole buildings utilizing these technologies.

Please bear in mind that publications of this type inevitably reflect the opinions
and prejudices of their authors. Hence, some readers may inevitably disagree
with my opinions, book structure, and of course the choice of presented material.
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In my opinion, such disagreements usually represent healthy reflections coming
from the diversity of technology under discussion and are essential for its evolution.

Nevertheless. I hope that all future readers will find something of interest here.

Boston Jan Ko$ny
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Chapter 1
Introduction

Thermal storage plays an important role in energy conservation, which is greatly
assisted by the incorporation of latent heat storage in different products. It has been
observed that building components, which store heat during peak power operation,
can reduce at the same time space-conditioning energy consumption. Phase-change
materials (PCMs) are one of the thermal control devices used today in building
envelopes. PCMs have been tested as a thermal mass component in buildings for at
least six decades. A key goal in low-energy building research is to find ways to
manage differences in time between energy sources and energy consumption (i.e.,
building loads). According to the International Energy Agency (IEA) Annex 24/42
Energy Conservation through Energy Storage/Solar Heating Cooling. thermal
energy storage, including PCM technologies. is essential for energy efficiency.’
PCMs are emerging materials with the potential to dramatically reduce cooling
energy consumption and peak cooling demand in buildings, when applied properly.

Published research data have shown that PCMs can notably enhance building
energy performance. A large variety of research studies demonstrated that an
application of thermal mass in well-insulated structures could generate heating and
cooling energy savings between 5 and 30 % in residential buildings (Feustel 1995;
Tomlinson et al. 1992; Yamaha 2006; Schossig et al. 2005; Castellon et al. 2007:
Koény et al. 2006, 2012a, b). Considering that new PCM-enhanced building
envelope components could be installed in about 10 % of both new and existing US
residential homes, the potential for energy savings would be between 0.6 % 10'" and
1.5 x 10" KWh/year (Koény et al. 2008).

There is large number of engineering publications focused on PCM as a major
subject. However, even though building envelopes represent major PCM applica-
tions. there is very little literature dedicated to this topic. Most of recent publica-
tions give overviews of PCMs performance, manufacturing processes. and testing
from chemical and thermal engineering points of view. Building applications are
usually presented more generally as a combination of wall applications,

’ http://www.iea-eces.org/files/annex_24_extension_work_plan_v6_20120917.pdf.

© Springer International Publishing Switzerland 2015 1
J. Koény. PCM-Enhanced Building Components, Engineering Materials
and Processes, DOI 10.1007/978-3-319-14286-9_1
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space-conditioning systems containing PCMs, active solar heating systems, and the
large-scale whole building seasonal thermal storage applications. This publication is
focused almost exclusively on PCM applications in building envelope components.
A variety of PCM-based building products and PCM blends with building materials
and insulations are presented here. Performance data for most major PCM building
envelope applications are also described here. Furthermore, this publication pre-
sents state-of-the-art testing methods enabling thermal performance analysis of
building envelope systems containing PCMs. In addition, numerical methods for
dynamic thermal analysis of PCM-enhanced building envelopes and whole build-
ings containing PCM building envelope components are discussed here.

PCMs in building envelopes can be used for many different purposes including
reduction of space-conditioning energy consumption, thermal peak load shaving
and shifting, local temperature control in building envelope components, or
improvement of overall system durability. This publication mainly discusses sev-
eral strategies for mitigation of thermal loads generated in residential and com-
mercial buildings. Reduction of the space-conditioning energy consumption can be
achieved either by improvements in building thermal shell components (i.e.,
through increasing the thickness of the insulation), or by adding PCM to the walls,
roof, attic floor insulation, floors and ceilings, and fenestration components.

In a traditional, simplified understanding, the thermal performance of insulation
is directly proportional to the insulation thickness, when isolating the exterior
surface from the rest of the building. However, reported results of field testing,
energy simulations, and cost analysis demonstrated that conventional thermal
insulations, due to relatively high-cost and diminishing energy benefits, cannot be
considered as the only means to achieve improved thermal performance of a
building shell in low-energy buildings (Kosny et al. 2012a, b). From the whole
system perspective, the impact of thermal insulation thickness on overall energy
efficiency is significantly more complex. Thermal analysis becomes more difficult
when adding the effects of structural members, local thermal bridging caused by
imperfections in insulation installation, air leakage, moisture content impact,
deterioration of material properties caused by aging, etc. This shows that taking into
account only thickness and thermal conductivity of insulation is not sufficient while
analyzing the overall thermal performance of building envelopes. Several alterna-
tive building envelope systems have been developed during last decades to assist
thermal insulation with control of building thermal loads and in the reduction of the
building space-conditioning energy consumption. These systems can be grouped
into the following basic areas:

e Exterior radiation control technologies—cool-roof and cool wall coatings
(Miller et al. 2008);

Radiant barriers and foil-faced insulations (Medina 2012);

e Conventional thermal mass and building components utilizing thermal inertia
for whole building energy consumption mitigation (Kosny et al. 1998; Kossecka
and Kosny 2002);

e Phase-change materials (Mehling and Cabeza 2008);



I Introduction 3

e Airspaces and naturally ventilated cavities (Sedlbauer and Kiinzel 1999; Miller
et al. 2010);
e Roofs with above the deck inclined airspaces (Miller et al. 2007).

Listed above, recent improvements in building envelope technologies suggest
that in the near future, residences can be routinely constructed to operate with very
low heating and cooling loads. Optimized design of building envelopes using
PCMs can be one of the engineering means to meet low-energy consumption
targets in the future. It may result in notable savings in energy consumption,
reductions in peak-hour power loads, shifting of building thermal loads, and
sometimes, in long-term system durability improvements. An application of PCM
thermal mass in buildings has been a main building research topic for the last
60 years. Although the information is quantitatively enormous, it is also spread
widely in the literature, and not easy to come across. In general, a material that uses
its phase-changing ability for the purposes of heating, cooling, or temperature
stabilization is defined as a PCM. PCMs have found applications in many fields,
including thermal energy storage. building energy efficiency, cooling of food
products, packaging and transportation, spacecraft thermal systems, solar power
plants, microelectronics, thermal protection of military installations, waste heat
recovery, etc. In most current building applications, PCMs continue to absorb heat
without a significant rise in temperature until all the material is transformed into the
liquid phase. When PCMs reach the phase transition temperature, they absorb large
amounts of heat at an almost constant temperature. Then, when the ambient tem-
perature around a liquid material falls, the PCMs solidify releasing stored latent
heat.

Concepts of latent heat and specific heat were discovered by Scottish scientist
Joseph Black in the mid-eighteenth century. He was a professor of Medicine and
Chemistry at University of Glasgow, UK. Prof. Black assisted James Watt in the
development of the steam engine. They also collaborated in a project to manu-
facture sodium hydroxide.

Ice is the best-known PCM used by humans for food preparation, food condi-
tioning, cold drinks, and space cooling. The knowledge of preserving snow for
cooling drinks and preserving food during the summer in warm countries has
endured since ancient times. Greeks and Romans bought snow and ice transported
on donkey trains from mountains. Most urban residents bought it at snow shops,
although few could afford private ice houses. Roman refrigeration techniques
involved digging deep pits that were then filled with snow and covered with straw.
Ice was also preserved for similar purposes in the northern regions of the world.

For generations, inhabitants of northern arctic regions have been using ice for
thermal stabilization of their dwellings. Igloos are the first-known application of the
phase-change latent heat in building structures. Derived from “igdlu,” the Inuit
word for “house,” igloos have been the traditional dwellings of the natives of the
frozen northern reaches of Europe, Canada, and Greenland for thousands of years
(Fig. 1.1). The igloo is an ingenious invention, very effective in keeping arctic
people warm. Igloos are relatively easy to construct and made from materials found
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Fig. 1.1 Igloo—a first human construction utilizing PCM—erection details

in abundance: snow and ice which serve simultaneously as building structural
components, thermal insulation, thermal radiation shield, and energy storage.
Blocks of ice are formed into the dome shape, joined together by snow. To prevent
excessive amount of snow and cold wind from coming in, a sunken entrance is
typically constructed, along with a raised sleeping platform covered with fur for
comfort and warmth.” According to Gonzélez-Espada et al. (2001), internal igloo
temperature circulates between 9 and 15 °C, when occupied, even during harsh
arctic winters where outside temperatures can drop to —45 °C.

Since the mid-twentieth century, latent heat of ice and a large group of materials
with capability of storing heat through the phase transition have been successfully
used in buildings. The first documented use of a PCM was by Massachusetts
Institute of Technology (MIT) researcher Dr. Maria Telkes in 1948 in a house
located in Dover, Massachusetts, USA. In this building, Dr. Telkes followed pas-
sive solar wall design, which was first explored by Edward S. Morse and patented
by him in 1881." In her house, metal drums filled with Glauber’s salt were used as a
part of a passive solar heating system. The five-room 135-m” house comprised of
two bedrooms. Solar energy was collected by the galvanized steel absorber plates,
painted black and placed behind the double glazing. Heat generated by this passive
solar system passed along a duct via a fan to three heat storage bins situated inside
the rooms (see Frysinger and Sliwkowski 1987).

During two and a half winters, in the Northern US coastal climate of Massa-
chusetts, the Dover house was exclusively heated by the sun, before the experiment

http://www.dspace.library.cornell.edu/bitstream/1813/125/2/1gloo.pdf.
*hup:/fwww.dailykos.com/story/2007/05/17/335503/-Old-Solar- 188 1.
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Passive Solar Room PCM House

Summer
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Air space,
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Fig. 1.2 PCM house built in Dover, Massachusetts, USA, by Dr. Maria Telkes and schematic of
its passive solar heating operation

ended. On cloudy days, when no solar energy was entering the system, a fan
system blew heat from the PCM storage, recrystallizing the salt. Dr. Telkes had
analyzed climatic data from the National Weather Bureau and found that, for a
period of 65 years, Boston had not gone more than nine days without the sun. She
estimated that 21 tons of salt would be enough to heat her house through a 10-day
sunless period (see Telkes 1978, 1980) (Fig. 1.2).

A large number of similar residential houses were designed and built in the
1950-1980s worldwide using similar solar design principals to Dr. Maria Telkes
approach. One of the first follow-up houses built by Lawrence Gardshire in New
Mexico, USA, consisted of a two-story 102-m? floor area with collector glazing
located in the roof structure (see Ghoneim and Klein 1991). Unlike Telkes’ design,
comprising of steel barrels with PCM located at the ground floor level: smaller
S-gallon steel storage cans were located within the roof space. The major difference
in configuration of the PCM containers was the addition of Borex to the Gluaber’s
Salts to act as a nucleation enhancing agent. In the 1980s, a large number of solar
houses using PCM were built in the USA following very promising field testing
results—such as performance data published by Balcomb and McFarland (1978) of
Los Alamos National Laboratory, New Mexico, USA, followed with numerous
publications describing design principles of passive solar houses using thermal mass
components (see Collier and Grimmer 1979; Wilson 1979; Cook 1980; Balcomb
et al. 1983; Garg et al. 1985; Neeper 1986), etc. In that time, in experimental passive
solar buildings utilizing PCM, different types of hydrated salts were often used for
heat storage (see Balcomb and McFarland 1978; Farouk and Guceri 1979; Ghoneim
etal. 1991; Crosbie 1997). For example, in late 1970s, Bordeau tested a passive solar
collector containing CaCl, x 6H,0, finding that a 8.1-cm-thick PCM wall had an
appreciable thermal accumulation (see Bordeau 1980). Unfortunately, these sub-
stances frequently created serious durability and corrosion problems, which later
affected a number of similar constructions.

*hitp://www.doverhistoricalsociety.org/documents/DoverDays_new/bicentennial/fifties.html.



