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Preface

With the increasing use of the language and machinery of differential
topology in practical applications, many research workers in the physical,
biological and social sciences are eager to learn some of the background to
the subject, but are frustrated by the lack of any self-contained treatment
that neither is too pure in approach nor is written at too advanced a level.
Few people have the time and energy to embark on a systematic study in a
field other than their own, and so this book is written with the purpose of
making diffevential topology accessible in one volume as a working tool for
applied scientists. It could also serve as a guide for graduate students
finding their way around the subject before plunging into a more thorough
treatment of one aspect or amother. The book should perhaps be read more
in the spirit of a novel. (with a rather diffuse ending) than as a text-book.
The particular aim is to study the global c;ualitative behaviour of
dynamical systems, although there are numerous byways and diversions along
the route. A dynamical system is some system (economic, physical,
biological ...) which evolves with time. Given a starting point, the system
moves within a universe of possible states according to known or
hypothesized laws, often de;c;ibable locally by a formula for the
'infinitesimal' evolution, namely a differential equation. The global
theory is the theory of all possible evolutions from all poésiblgtinitiql
states, together with the way these fit together and relate tc each other.
Qualitative theory is concerned with the existence of constant (equilibrium)

behaviour, pericdic or recurrent behaviour, and long~term behaviour,



together with questions of local and overall stability of the system. Global
qualitative techniques, mainly stemming from the work of Henri Poincar€
(1854-1912), are important both because precise quantitative theoretical
solutions may in general be unobtainable, and because in any case a
qualitative model is the basis of a sound mental picture without which
mechanical calculation is highly dangerous.

The natural universe of evolution for a dynamical system is often a
differentiable manifold; the evolution itself is a flow on the manifold,
and a differential equation for infinitesimal evolution becomes a vector
field on the manifold. Chapters 1-3 of the book are concerned with defining
and explaining these terms, while Chapter 4 goes into the qualitative theory
of flows on manifolds, ending with some discussion of bifurcation theory.
There is an Appendix on basic terminology and notation for set theory.

Inevitably there are many topics which should have been included or
developed but which would have expanded the volume to tﬁice,iti size.
Differential forms are hardly mentioned, singularity theory is only touched
upon, and the fascinating terrain of general bifurcation theory‘for‘
differential equations, including the Centre Manifold Theorem fone of the
few really practical applications of differential topology), is left largely
unexplored. I hope the tantalized reader will ﬁ};able to follow up these
topics via the references given.

Formal prerequisites are kept to a minimum. The ideas from topology and
linear algebra that are needed are mostly developed from first principles,
so that the basic requirements are hardly more¢§han a familiarity with
derivatives and partial derivatives in elementary calculus - although
these, too, are defined in the text. The exceptions to this are complex

numbers, which are assumed to be well-known objects to mathematically-minded



scientists, and determinants and eigemvalues of matrices which may be less
sell-known to some but are everyday equipment for others. My Excuse,for
this logical inconsistency is lack of space and the need to draw a line
somewhere: I felt that it was more important to discuss carefully some

of the fundamental ideas about linear spaces upon which the rest of the
structure is built than to go on to techniques familiar to many people and
in any case quite accessible elsewhere. In the first three Chapters the
complex numbers feature mainly in examples and illustrations but in their
roles as eigenvalues they become crucial to the main plot in Chapter 4.

. As overall references for the qualitative theory of dynamical systems, I
suggest the now historic survey article by Smale [125] and the subsequent
very readable lecture notes of Markus [73 ]. The excellent books on
differential equations by Arnol'd [11] and Hirsch and Smale [55] are both
directed towards the qualitative theory of flows on manifolds. For back-
ground on differential topology a recent and attractive text is Guillemin
and Pollack [48]: there is also a forthcoming book by Hirsch [52 ]. The
fascinating article on applications to fluid mechanics and relativity by
Marsden, Ebin, and Fisher [75] is highly recommended (see also the
introd&ction to differential topology by Stamm in the same volume),

The present book grew from a series of lectures given to a mixed
audience of pure and applied mathematicians, engineers, physicists and
economists at Southampton University in 1973/74. It is through the
encouragement of several of these colleagues that I have expanded the
lecture notes into.book form, and I am grateful to them and others for
helpful comments and criticisms. I am particularly indebted to Peter Stefan
of the University College of North Wales, Bangor who carefully read the

original notes and offered many detailed suggestions for improvement.,



Despite all this assistance, I claim the credit for errors. I would also
like to thank Professor Umberto Mosco and Professor Nicolaas Kuiper for
hospitality at the Istituto Matematico della Universitd di Roma and the
I.H.E.S., Bures-sur-Yvette, respectively, during visits to which I wrote up
much of the notes. I am grateful also to Pitman Publishing for their
interest in the book and patience during its production, to my wife Ann for
tolerating the side-effects, and especially to Cheryl Saint and Jenny Medley
) for spending many long hours producing such a perfect typescript.

Finally, my special thanks go to Les Lander for taking upon himself the

task of drawing all the figures in the book, and obtaining such professional

results in a short space of time.

David Chillingworth
Southampton, August 1976.



Contents

1.

2,

Basic topological ideas

1.1 The concept of a function

1.2 Continuity

1.3 Continuity from a more general viewpoint

1.4 Further topological concepts

1.5 Homeomorphism of spaces and equivalence of maps
1.6 Compactness
1.7 Connectedness

Remarks on the literature

Caleulus

Differentiation

Linear spaces and linear maps

Normed linear spaces

Differentiation (continued)

Properties and uses of the derivative
Higher orders of differentiation

Germs and jets

Local structure of differentiable maps I:
Non-singular behaviour

Local structure of differentiable maps II:
Singularities

NMNNONRNNMNNNMDNN
e e ® ©® ° o
co~NOULPLN M-

N
°
el

Remarks on the literature

Differentiable manifolds and maps

3.1 The concept of a differentiable manifold
3.2 Remarks, comments and more examples cf
differentiable manifolds
3.3 The structure of differentiable maps between manifolds
3.4 Tangent bundles and tangent maps
3.5 Vector fields and differential equaticns

Remarks on the literature

18
25
27
33

35

92
100

115

116

131
146
162
179

189



4, Qualitative theory of dynamical systems

4,1 Flows and diffeomorphisms

4,2 Local behaviour near fixed points and periodie orbits
4,3 Some global behaviour

4.4 Generic properties of flows and diffeomorphisms

4.5 Global stability

4,6 Dynamical systems under constraint

4,7 Breakdown of stability: bifurcatiom theory

Remarks on the literature
APPENDIX: Terminology and notation for sets and functions
REFERENCES

Index

191
204
217
221
227
245
252

267

268

273

284



1 Basic topological ideas

1.1 THE CONCEPT OF A FUNCTION
We usually visualize a real-valued function of a real variable in terms of

its graph:
xep f(x)

\// \ Lot

Figure 1
For a given number x (i.e. x e R) the function £ provides
another real number f(x). The graph consists of all points in a plane
coordinatized by (x,y) which satisfy y = f(x), or in form#l notation
graph(f) = {(x,y) e RxR | y = £(x)} .
Another 'picture' of the function, though less useful than the above, is

the following:
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Figure 2




For a real function f of two real variables (xl,xz) the graph could
be thought of as a landscape, with (xl,xz) as coordinates in a
'horizontal' plane and f(xl,xz) being measured 'vertically'.

Formally, we hdve (xl,xz) e RxR= R2

5 f(xl,xz) e R and
graph(f) = {((x,x,), ) € RZ x R =R | y = £Gxpuxp)}

Alternatively; we can picture f by a 'source and target' picture:

R R

+ OX%)

1Fix,X,)

Pigure 3
Now suppose we have two functions fl’ f2 of two variables (xl,xz) v
We can consider them both at the same time by writing
£(x,,%,) = (£,(x,,%,), £,(x;,%,)) ¢ Rx R =R%
1172 151272 2 **122

so that f 1is a function from R2 to R2 s

R* R’
(x,,x,) fx,.x,)
T £,0¢,,%,) R
f
—_— &
fx,x,)
Figure 4

The 'graph' picture in this case is harder to visualize, since by analogy

with the previous definition of graph we have



2
graph(£) = {((x},%), (31,3)) € RZ x R | y; = £,(xp,xy)
i=1, 2}

4
and so the graph is a subset of R2 x R% = R .

In a similar way, if we are given k functions of n variables we can
put them all together to obtain a corresponding function from R® to Rk .
We write x = (xl,xz, ...,xn), let

f(x) = (fl(x), fz(x), sawy fk(x)) P
and keep in mind the picture:

R" R

.x=(xwmxg

Figure 5

In formal notation this would be written as
£:RY>RE .

The graph of £ would be a subset of R" x RE = potk , difficult to
visualize and in general not yielding as much intuitive information about
the behaviour of f as we might extract from Figure 5 by considering the
way f causes R" to be folded up and twisted inside Rk .

The techniques for analyzing such 'folds and twists' are those of topology
and calculus together, or differential topology. Thus we see already how

a study of differential topology may give useful insight into the ways in

which k functions of n variables can mutually interact both in general



circumstances and in particular cases. Our aim in the first two chapters

\

will be to develop some of these basic techniques.

Remarks

1. It is frequently necessary to consider functions which are not defined
for all values of the variables (xl,xz,...,xn) but only for

X = (xl,xz,....xn) belonging to some subset U, say, of RY .

In this case we of course write

.

f:U0-~> Rk

2. The word funetion is usually reserved for real-valued functions only,
i.e. those of the form

f : (something) - R .

In other cases (e.g. for f : U ~» Rk , k > 1) we tend to use the term

map or mapping.

1.2 CONTINUITY

Roughly speaking, a map is continuous if by making a small perturbation in
the input (i.e. the independent variables) you obtain only a small change
in the cutput (i.e. the dépendent variables). However, this is obviously
far too vague a definition. For example, we would wish to think of the
function g : R+ R defined by f(x) = 1023x as being continuous
(indeed, its graph is a straight line), but it could be argued thai small

changes in x produce very iarge changes in g(x). The formal

definition of continuity for functions f : R+ R 1is as follows:

(a) Continuity at a point x, - The function f is continuous at X,

if, given any positive number e (thought of as admissible margin of



error in the output), it is then possible to find another positive,
number & such that perturbing X by less than & causes f(xo)
to vary by less than €. Symbolically,

|xo - x|l< § 1implies If(xo) -f| <e .

(b) Continuity. If we are considering f defined on some subset U of
R, then we say that f 1is continuous on U if it is continuous at
each point X, belonging to U. If U 1is the whole of R .or is in
any case understood from the context then we simply say that f 1is

continuous .

Note that the fumction g in the above example is continuous, since for

any X, and any € we may take § = 10235 .

Remarks

1. It is tempting to &y to combine (a) and (b) by saying (hopefully) that
f is continuous on W 1if, given any € > 0, there exists a § > O

such tﬁat

|x - y] <6 implies |f(x) - £(¥)| <€

for all x and y belonging to U. This is not the same as the
previous definition, however. For example, the function f : R+ R
defined by f(x) = x2 is continuous according to (a), (b) but it does
not satisfy the 'hopeful' definition. The point is that for the
genuine definition of continuity we must allow & to depend on X, (as
well as on €, of course).v If we do not do this, but demand that the
same & should apply everywhere (given €), then we have uniform
continuity - a notiog which is in fact of considerable importance in

contexts invoiving approximating functions by other functions as



for example in certain techniques of numerical analysis.

2. All 'standard' functions such as polynomials, exponentials, sin X and
so on can easily be proved to be continuous where-they are defined.

The only hazard to continuity in combining them ad libitwn is the risk

of dividing by a function which vanishes somewhere.

It is easy to see how the definition of continuity will go over to
functions f : R™ » Rk , since all that is necessary is to replace the
modulus by the euclidean distaﬁce from the origin in R® or Rk (see
Example 3 below). However, we shall need to study the 'small change in
input gives small change in output' problem in situations where the input
and output may be rather more complicated than numbers or n—tuples of real
numbers; for example, they may be differential equations, or perhaps
collections of functions. Therefore we want to generalize the definition
of continuity so that it applies to maps f : A+ B where A and B are
sets other than R" or subsets of R" . To do this we need notions of
distance in both sets A, B; then we could simply say
(a) £ : A~> B is continuous at X, €A if, given € > 0, there exists
§ > 0 such that if the distance from X to X (in A) 1is less
than & then the distance from £(x) to f(xo) (in B) 1is less
than €3 ‘

(b) £ : A> B 1is continuous if it is continuous at every point in A.

Now it turns out that the minimal properties that a 'distance function'
d on a set S needs to have in order to reflect adequately the basic
relationships of distance in euclidean space are these:—

(1) d(s,s') 1is always > 0, and = 0 when and only when s = s'



(2) d(s,s') =d(s',s) for all s and s' in S ;
(3) d(s,s") < d(s,s') + d(s',s") for all s, s' and s" in S .
(This last property is known as the triangle imequality.) A distance

function satisfying (1), (2) and (3) is called a metric.

DEFINITION
A function d which satisfies (1), (2) and (3) above is called a metric on
S. A set S together with a particular metric on it is called a metkric

space.

Note that d is actually a function from S x S to\ R, and not a
A\
function on S itself. The image of d 1is contained in the set R; of

non-negative real numbers (by (1)), and so we could write d : S x S > R: .

EXAMPLES of metric spaces

1. S =R, d(x,y) = |x - y| (the prototype example).

4
2. 8 = RZ, d(x,y) = (x1 - yl)2 #* (xz - Y2)2| .

4

n
2
iZI (x; - y))

3. § = Rn, d(x’y) =

Examples 1 and 2 are special cases of Example 3, known as the

. . .. n
euclidean metric or usual metric in R .

4. S = {bounded functions f : [a,b] + R}
d(f,g) = sup [f(x) - g(x)] .
agxghb
5. S = {differentiable functions f : (a,b) » R with bounded
! derivative}
d(f,g) = sup [£(x) - gx)| + sup [£'(x) - g"(x)| .
a<x<b a<x<hb



Eiamples 4 and 5 are simple examples of function spaces, i.e. spaces
whose elements are themselves functions or maps defined on other spaces.

Example 6 is also a type of function space.

6. S = {systems of differential equations of the form

il = fl(xl’XZ)
(F)
iz = fz(xl,xz)

defined on R2 and such that fl,f2 are bounded continuous

functions}

d(F,0) = sup (£, (0% - gy (xppx))
(xl,xz) € R2
4
* (£ (xphx)) - ‘?*2("1"‘2))2

where F, G are defined by f's, g's respectively.

There are two important general types of example:

7. Let S be any set, and let T be a subset of S. Suppose that S is
equipped with a metric d. Then T naturally inherits a metric from d,
called the induced metric. Formally, if we write

d:sxs~>R
o
then the induced metric is the restriction d|T x T .
8. Let S be any set, and define d by

d(x,x) =0 for all x e S }

d(x,y) =1 whenever x # y

It is easy to verify that this satisfies the rules (1), (2), (3) for a

metric. It is known as the discrete metric on S. Note that we do not



