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Preface .

Dynamics is the third volume of a three-volume textbook on Engi-
neering Mechanics. Volume 1 deals with Statics; Volume 2 contains
Mechanics of Materials. The original German version of this series
is the bestselling textbook on Engineering Mechanics in German
speaking countries; its 12th edition has just been published.

It is our intention to present to engineering students the basic
concepts and principles of mechanics in the clearest and simp-
lest form possible. A major objective of this book is to help the
students to develop problem solving skills in a systematic manner.

The book developed out of many years of teaching experience
gained by the authors while giving courses on engineering me-
chanics to students of mechanical, civil and electrical engineering.
The contents of the book correspond to the topics normally co-
vered in courses on basic engineering mechanics at universities
and colleges. The theory is presented in as simple a form as the
subject allows without being imprecise. This approach makes the
text accessible to students from different disciplines and allows for
their different educational backgrounds. Another aim of the book
is to provide students as well as practising engineers with a solid
foundation to help them bridge the gaps between undergraduate
studies, advanced courses on mechanics and practical engineering
problems. :

A thorough understanding of the theory cannot be acquired
by merely studying textbooks. The application of the seemingly
simple theory to actual engineering problems can be mastered
only if the student takes an active part in solving the numerous
examples in this book. It is recommended that the reader tries to
solve the problems independently without resorting to the given
solutions. In order to focus on the fundamental aspects of how the
theory is applied, we deliberately placed no emphasis on numerical
solutions and numerical results.
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Introduction :

The primary task of mechanics is the description and prediction
of the motion of bodies along with the associated forces. The sub-
ject of mechanics can be broken into the disciplines of statics and
dynamics. The subject of statics is the study of bodies in equilibri-
um. Dynamics, on the other hand, deals with bodies in motion. It
is further sub-divided into the subjects of kinematics and kinetics.
Kinematics is the study of the geometry and time evolution of mo-
tion independent of the forces causing the motion, while kinetics
concerns itself with the interplay between forces and motion.

Statics as a subject has its origin in antiquity. Dynamics, in
comparison, is a much younger discipline. The first systematic
studies in dynamics were undertaken by Galileo Galilei (1564-
1642). With the help of a series of brilliantly designed experiments,
he was able to determine the laws of motion governing bodies in
free fall and those of projectiles, as well as the law of inertia in
1638. To fully appreciate Galilei’s achievements, one should note
that differential and integral calculus were unknown in his time
and instruments to precisely measure time were non-existent.

The scientific foundations for dynamics were laid down by Isaac
Newton (1643-1727), who in 1687 formulated what we now know
as Newton’s Laws of Motion. Newton’s Laws were able to accura-
tely explain all experimental evidence at that time and the conclu-
sions drawn from them have been confirmed to accurately predict
the motion of all macroscopic bodies. We will treat these laws as
axiomatic in character — they are not subject to mathematical
proof.

Before we can study the interplay of forces and motion, it will
be useful to first consider the purely geometric aspects of motion
(kinematics). In this regard, we will carefully introduce the no-
tions trajectory, velocity, and acceleration. Depending upon the
type of motion (e.g. rectilinear, planar, or three-dimensional) we
will describe these concepts using a variety of variables and coor-
dinate systems. Our point of departure for the study of dynamics
will be Newton’s Laws of Motion. We will restrict our attenti-
on to the study of point masses and rigid bodies. With the help



2 Introduction

of these idealizations, we will see that we can effectively treat a
wide variety of complex technical problems and arrive at useful
solutions.

Newton’s Laws of Motion are valid only in inertial frames of
reference. However, it is often more convenient to formulate pro-
blems relative to moving frames of reference. In this regard, we
will also briefly treat the topic of relative motion.

Newton’s Laws of Motion are equivalent to the so-called prin-
ciples of mechanics — the virtual power or work principles. In the
solution of some problems it is useful to employ these alternate
forms of the fundamental laws. We will restrict ourselves to the
presentation of d’Alembert’s principle and Lagrange equations of
the 2nd type. ‘

In the study of dynamics we will reuse many concepts we have
already introduced in the study of statics, e.g. space, mass, force,
moment, and idealizations such as point masses, rigid bodies, and
point forces. Fundamental concepts from statics such as section
cuts, the action-reaction law, and the force parallelogram law will
also be employed. In the solution of conerete problems, we will also
see that free-body diagrams will play a central role, just as they
did in the study of statics. For the study of motion, we will further
see that we will have to introduce a new fundamental variable,
time, which was unnecessary in statics. With the introduction of
time, we will find the need to define new dynamical concepts (e.g.
velocity, acceleration, impulse, kinetic energy) and dynamical laws
(e.g. impulse law and the work-energy theorem); it is with these
concepts and related ideas that we will occupy ourselves in the
chapters to follow.



Chapter 1

Motion of a Point Mass
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Objectives: We will first learn how one describes the mo-
tion of a point mass by its position, velocity, and acceleration in
different coordinate systems and how such quantities can be deter-
mined. Subsequently, we will concern ourselves with the equations

of motion, which prescribe the relation between forces and motion.
An important role will again be played by the free-body diagram
with whose help we will be able to properly derive the equations

of motion. Further, we will discuss important physical concepts
such as momentum, angular momentum, and work-laws and their
applications.



1.1  Kinematics 5

1.1 Kinematics

1.1.1 Velocity and Acceleration
The subject of kinematics is the description of motion in space.
Kinematics can be thought of as the geometry of motion indepen-
dent of the cause of the motion.

The position of a point mass M in space is given by a point
P and is uniquely described by its position vector v (Fig. 1.1a).
This vector shows the momentary or instantaneous location of
M relative to a fixed reference point in space, 0. If M changes
location with time ¢, then r(¢) describes the frajectory or path of
M.

Av

vit +At) :vrf-AHNII‘

v(f)

Fig. 1.1

Let us now consider two neighboring locations for M, P and
P’, at two different times ¢ and t + At (Fig. 1.1b). The change
in the position vector over the time interval At is given by Ar =
r(t + At) — r(t). The velocity of M is defined as the limit of the
change in position with respect to time:

v = lim rli B ) = lim E = d_r =
At—0 At At—0 At dt

F.o (1.1)

Thus, the velocity » is the time derivative of the position vector
r. We will usually denote time derivatives with a superposed dot.
Velocity is a vector. Since the change of the position vector, Ar,

1.1



6 1 Motion of a Point Mass

in the limit as At — 0 points in the direction of the tangent to the
trajectory of M, the velocity is always tangent to this curve. The
velocity points in the direction that the mass traverses the path in
space. In order to determine the magnitude of the velocity vector,
we introduce the are-length s as a measure of distance covered
by M along its trajectory. Assume that the mass has moved a
distance s up to the location P and a distance s + As up to the
location P’. With |Ar| = As, one obtains from (1.1) the speed

e T As B ds
Pl=v=dmar =@
Velocity and speed have dimensions of distance /time and are often
measured in units of m/s. The units of km/h, which are used in
transportation applications, are related as 1km/h = %}J—S% m/s
= % m/s or 1 m/s = 3.6 kim/h.

In general, velocity depends on time. In neighboring positions
P and P’ (Fig. 1.1¢) the considered point mass has velocities v(t)
and v(t + At). Thus, the change in the velocity is given by Av =
v(t + At) — v(t). The acceleration is defined as the limit of this
change with respect to time:

=3. (1.2)

e d+AY—w(t) . Av dv . :
AT A AR M et 09

Thus the acceleration a is the first derivative of v and the se-
cond derivative of r. Acceleration is a vector. But since Av (see
Fig. 1.1¢) does not have an obvious relation to the trajectory, we
can not easily make statements about its direction and magni-
tude. Acceleration has dimensions of distance/time? and is often
measured in units of m/s%

Velocity and acceleration have been introduced independent of
a coordinate system. However, to solve specific problems, it is
useful to introduce particular coordinates. In what follows, we
will consider three important coordinate systems.
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1.1.2 Velocity and Acceleration in Cartesian Coordinates -

If we want to describe motion in Cartesian coordinates, we can
choose 0 as the origin of a fixed (in space) system x, y, z. With unit
vectors (basis vectors) e, e,, e. in the three coordinate directions
(Fig. 1.1a), the position vector is given as

r(t) =z(t) ez + y(t) ey, + z(t) e, . (1.4)

This is a parametric description of the trajectory with t as the
parameter. If one can eliminate time from the three component
relations in (1.4), then one has a time independent geometric de-
scription of the trajectory (cf. e.g. Section 1.2.2).

Using (1.1), one finds the velocity via differentiation (the basis
vectors do not depend on time):

v=r=ie, tie,+ie,. (1.5)

Further differentiation gives the acceleration as

a=v=F=%e;+iey;+Ze;. (1.6)

Thus the components of the velocity and acceleration in Cartesian
coordinates are given as

e = Uy == s =32, (1.7)
by =My =&, Oy = Uy =Y ay = U, = Z.
The magnitudes follow as
(1.8)

1.1.3 Rectilinear Motion
Rectilinear motion is the simplest form of motion. Even so, it has
many practical uses. For example, the free fall of a body in the



