FLUID AND ELECTROLYTES IN PRACTICE

STATLAND

Fluid and Electrolytes In Practice

HARRY STATLAND, M.D.

Associate in Medicine, University of Kansas School of Medicine; Consultant in Medicine, Veterans Administration Hospital, Kansas City, Missouri; Attending Physician, Menorah Medical Center, Kansas City, Missouri

London

First Published in the United States of America in 1954 by J. B. LIPPINCOTT COMPANY

Published in Great Britain by PITMAN MEDICAL PUBLISHING CO., LIMITED 45 New Oxford Street, London, W.C.1

ASSOCIATED COMPANIES

SIR ISAAC PITMAN & SONS, Ltd.
PITMAN HOUSE, PARKER STREET, KINGSWAY, LONDON, W.C.2
THE PITMAN PRESS, BATH
PITMAN HOUSE, LITTLE COLLINS STREET, MELBOURNE
27 BECKETTS BUILDINGS, PRESIDENT STREET, JOHANNESBURG

PITMAN PUBLISHING CORPORATION 2 WEST 45TH STREET, NEW YORK SIR ISAAC PITMAN & SONS (CANADA), Ltd. (INCORPORATING THE COMMERCIAL TEXT BOOK COMPANY) PITMAN HOUSE, 381-383 CHURCH STREET, TORONTO

Preface

The material in this book was first presented as a series of lectures to undergraduate and postgraduate students at the University of Kansas School of Medicine, in 1950. It was at the request of many of these students that the notes have here been assembled, amplified and presented as a practical guide to fluid and electrolyte therapy.

In presenting the necessary chemistry and physiology, perhaps I have erred on the side of oversimplification, in order to keep the text intelligible to those practicing physicians who have long been removed from the basic sciences. While nothing has been sacrificed in accuracy or completeness by this, I have felt that it was justified in the interests of practicability. The physiologic principles upon which proper therapy is based have not been concentrated into any single chapter; rather, they are discussed at different points throughout the text where the discussion seemed to adapt itself to a logical explanation of the clinical picture and the management. For this reason frequent cross references are made in order to avoid repetition.

Part One presents the basic principles of fluid movements and the major abnormalities of volume, concentration and acid-base balance. In this section the management of the surgical patient has been stressed particularly. In Part Two the application to management of special diseases is discussed more fully. A thorough understanding of Part One is necessary in order to apply effectively the principles of management discussed in Part Two.

The volume of literature on this subject has become so great that it is impossible to mention all the excellent papers that have been published. Therefore, the bibliography includes only a representative selection of articles which either demonstrate certain important principles or have some clinical bearing on these principles. I have drawn heavily on the work of J. L. Gamble, J. P. Peters, D. C. Darrow and A. M. Butler, who have been the pioneers in this field. The more recent literature has been stressed particularly, in the bibliography.

I am especially indebted to Dr. Alexander Leaf at the Massachusetts General Hospital for his discussions and help in the early stages of preparation of this book. I am grateful to Dr. Jack Zellermayer, Dr. Sidney Rubin and Dr. Morris Statland for reading the manuscript and for their many suggestions. Miss Lois Brunner and Miss Rita Carr, medical technicians, were of great help in developing the fluid balance service and in the study of fluid problems in many patients. I wish also to thank Mrs. Angelika Howard and Mrs. Evelyn LeVine for their help in checking the bibliography, and Mrs. Mary Lou Stickel for typing the manuscript. The drawings were made by Miss Arlene Nichols.

H.S.

PART ONE

General Principles

1.	FLUID STRUCTURE	3
	Electrolytes	S
	Chemical Equivalents	3
	Osmotic Effects	6
	Fluid Compartments of the Body	7
	Chemical Structure of Fluids	11
	Extracellular Fluid	11
	Cellular Fluid	13
2.	Movements of Fluids in the Body	15
	Fluid Transport Through Vessels	15
	Kidney and Hormonal Regulation	17
	Control of Blood Osmolarity	18
	Control of Blood Volume	20
	Fluid Movements and Concentration Changes.	21
	Effects of Sodium Concentration	21
	Potassium Effects	25
	Protein Concentration Effects	26

3.	INTAKE, OUTPUT AND VARIATIONS	27
	Obligatory Losses and Gains of Fluid	28
	Fluid of Perspiration and Urine	28
	Losses Within the Body	31
	Sodium Intake and Output	31
	Potassium Gain and Loss	32
	Intestinal Losses	33
	Stress Reactions	35
4	Prevention of Imbalance in the Postoperative	
4.	PATIENT	39
		43
	Routine Requirements Fluids	43
	Sodium	44
	Potassium	45
	Glucose	45
	Blood	45
	Intestinal Suction	46
	Prevention of Imbalance in Complicated Surgical	
	Cases	46
5.	Water Depletion	49
	Causes	50
	Fluid Shifts	50
	Blood and Urine Picture	52
	Clinical Picture	53
	Requirements of Therapy	54
	requirements of Therapy	UT
6.	Salt Depletion	55
	Causes	55
	Fluid Shifts	57
	Blood and Urine Picture	58
	Clinical Picture	59
	Unusual Types of Salt Depletion	60
	Requirements of Therapy	61

7.	MIXED	DEPLETIONS, POTASSIUM ALTERATIONS AND	
		Magnesium	63
	Mi	ixed Depletions	63
		Fluid Shifts	64
		Blood and Urine Picture	65
		Clinical Picture	65
		Requirements of Therapy	66
	Po	tassium Alterations	66
		Causes of Elevation of Serum Potassium	67
		Causes of Potassium Depletion	67
		Fluid Shift and Blood Picture	69
		Clinical Picture of Hyperkalemia	70
		Clinical Picture of Hypokalemia	71
		Treatment of Potassium Imbalance	72
		Relationship of Potassium to Serum Calcium.	73
	Ma	agnesium	73
		Treatment of Magnesium Imbalance	75
8.	ACID-B	Sase Balance	77
		pes of Acid-Base Abnormalities	80
	- ,	Metabolic Acidosis	82
		Metabolic Alkalosis	83
		Respiratory Alkalosis	85
		Respiratory Acidosis	87
		Diagnosis and Differential Diagnosis	89
	El	ectrolyte Shifts in Acidosis and Alkalosis	90
	Re	enal Regulation of Acid-Base Balance	92
		Base Conservation	93
		Conservation of Anions	90
	Ac	id-Base Changes in Clinical States	96
		Vomiting, Gastric Lavage and Pyloric	
		Obstruction	96
		Diarrhea, Intestinal Suction and Fistula	99
		Fasting and Starvation	99

	٠	•	×	
17	1	1	Ť.	4
٧	1	1	Ł	

9.	TREATMENT OF MAJOR DEPLETIONS	101
	Solutions Available for Treatment	102
	Order of Administration	106
	Treatment of Water Depletion	107
	Treatment of Salt Depletion	109
	Treatment of Mixed Depletions	112
10.	EDEMA AND DIURETICS, AND WATER INTOXICATION	115
	Development of Edema	117
	Secondary Fluid and Electrolyte Factors	118
	Other Causes of Edema	120
	Therapeutic Implications	
	Water Intoxication	125
	PART TWO	
	Application to Special Conditions	
11.	Heart Disease	129
	Edema of Decompensation	130
	Effect of Sodium Withdrawal and Diuresis	130
	Effects of Fluid Withdrawal	132
	Acid-Base Changes	134
	Management of Cardiac Edema	134
	Refractory Cardiac Edema	135
	Low Salt Syndrome	135
	Hypochloremic Alkalosis	137
	Dehydration and Potassium Depletion	137
12.	KIDNEY AND UROLOGIC DISEASES	141
	Urea Excretion	143
	Salt Excretion	144
	Other Substances	146
	Renal Acidosis	146
	Management of Chronic Nephritis	148

12.	KIDNEY AND UROLOGIC DISEASES	.Contin	med
	Management of Renal Shutdown		150
	Phase of Anuria		150
	Phase of Diuresis		153
	Acute Glomerulonephritis		153
	Nephrotic Stage of Glomerulonephritis		153
	Prostatic Obstruction		154
	Ureterocolostomy		155
13.	DIABETIC ACIDOSIS		157
	Clinical and Laboratory Picture		160
	Phosphorus and Magnesium	*****	160
	Treatment of Diabetic Acidosis		161
	Estimation of Deficit		161
	Order of Treatment		162
	Development of Hypokalemia		164
14.	PEDIATRIC FLUID BALANCE		167
	Newborn	*****	168
	Infantile Diarrhea		169
	Therapy		171
15.	Burns, Cirrhotic Ascites, Toxemias of Pregna	NCY	173
	Burns		173
	Estimate of Deficit		174
	Stage of Diuresis	e: » × « « «	177
	Cirrhotic Ascites		178
	Toxemias of Pregnancy		180
	Blood Chemical Changes		181
	Treatment		182
	Bibliography		183
	Index		197

Part One

GENERAL PRINCIPLES

此为试读,需要完整PDF请访问: www.ertongbook.com

CHAPTER ONE

Fluid Structure

ELECTROLYTES

By electrolytes we refer to those substances which, when placed in water, dissociate into charged particles called ions. Positively charged ions are spoken of as cations, and in the blood they are Na⁺, K⁺, Ca⁺⁺ and Mg⁺⁺. The negatively charged ions, called anions, are Cl⁻, PO⁻⁻, HCO₃⁻, organic acids and proteins. Other substances, such as urea and glucose, are also present in blood serum, but since they have no electric charges and do not dissociate into charged particles they are not electrolytes.

CHEMICAL EQUIVALENTS

In studying the alterations in blood chemistries and their concentration we are not concerned with how much the ions weigh (mg. %), but rather with how many ions there are (mEq./L.). The milliequivalent system of terminology is an important tool in the understanding of this subject and it is virtually impossible to follow electrolyte shifts when they are expressed as milligrams per cent. If the reader will forgive a

simple but point-making analogy, one might compare this to the hostess making up her list of guests to a dance. She does not invite 1,000 pounds of girls for 1,000 pounds of boys. Rather, she is interested in how many of each, and, regardless of difference in weights, the number of individual males and females (anions and cations) must be equal.

As an example, since the atomic weight of sodium is 23, 23 Gm. of sodium is one equivalent of sodium, chemically speaking. Expressing this in milligrams, rather than grams, and in milliequivalents, instead of equivalents, therefore:

23 mg. of sodium is 1 milliequivalent 46 mg. of sodium is 2 mEq. 69 mg. of sodium is 3 mEq. and so on.

The atomic weight of chlorine, on the other hand, is 35. Therefore, 35 Gm. of chlorine is one chemical equivalent, and 35 Gm. of chlorine combines equally with only 23 Gm. of sodium. Expressed in milligrams then:

35 mg. of chlorine is 1 mEq. 70 mg. of chlorine is 2 mEq. 105 mg. of chlorine is 3 mEq., and so on.

It is apparent then that dividing the number of milligrams of a monovalent substance by its atomic weight gives the number of combining particles or milliequivalents. Milligrams are ordinarily reported in terms of 100 cc. of solution and milliequivalents are reported in terms of 1,000 cc. of solution so we have to multiply by 10 in converting from milligrams to milliequivalent terminology.

So far we have discussed ions which have a valence of 1, that is, ions, which have a single electric charge. Since each atom of a bivalent substance has 2 charges, it can combine with 2 monovalent ions. The atomic weight of such a substance therefore represents 2 chemical equivalents. The atomic weight of calcium is 40. Therefore, 40 mg. of calcium is 2 mEq., since this amount would combine with 2 mEq. of Cl-, which is monovalent. The rule then becomes: To convert mg. % to mEq./L.:

Table 1. Conversion of the More Commonly Used Electrolytes from Mg.% to MEQ./L.

Na+	mg.% x 10) 23	= mEq./L.
K^+	mg.% x 10	÷ 39	== mEq./L.
Cl-	mg.% x 10	\div 35	== mEq./L.
Ca++	mg.% x 10	→ 40 x 2	= mEq./L.
Mg++	mg.% x 10) 24 x 2	= mEq./L.
CO ₂ V	Vol.%	-2.22	== mEq./L.

Table 1 shows the conversion of the commonest electrolytes from mg.% to mEq./L. Note that carbon dioxide combining power is converted to milliequivalents by dividing volume per cent by 2.22.

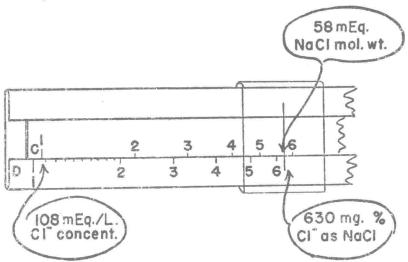


Fig. 1. Slide rule conversion of milligram per cent to milliequivalents per liter. Serum chloride, expressed as sodium chloride (NaCl) in mg. %, may be converted to mEq./L. by one setting on the slide rule. The determination in mg. % is set under 58 (molecular weight of NaCl), and the Index 1 indicates the reading of chloride (Cl) in mEq./L.

6 Fluid Structure

Until hospitals begin to use the milliequivalent system in reporting serum electrolytes, it will be necessary for the physician to make quick conversions. For this purpose a celluloid pocket slide rule is most helpful. As shown in Figure 1, the slide rule will convert milligrams per cent of chloride, reported as sodium chloride, to milliequivalents per liter by a single setting. One should make certain however that the chlorides are measured in serum and not in whole blood since the two values are appreciably different. For electrolyte balance purposes, blood chemistries are of relatively little value compared to serum chemistries, since the determinations may be altered by the degree of anemia or by hemoconcentration. This is true because of the marked difference of chemical values in the serum as compared to blood cells.

OSMOTIC EFFECTS

If two different solutions are separated by a membrane impermeable to the dissolved substances, there will occur a shift of fluid through the membrane from the least concentrated to the more concentrated solution, until the solutions are of equal concentration. This is termed osmosis and the dissolved substances are said to exert an osmotic force in causing the fluid shift. The magnitude of this force is dependent upon the number of particles dissolved and not upon their weights or valences. Thus 10 atoms of sodium have the same osmotic force as 10 atoms of calcium or 10 molecules of protein, in spite of the differences in valence and weight. Sodium, therefore, exerts a more potent osmotic force than the same weight of protein since there are so many more molecules of sodium than protein in a given weight of both substances. The term milliosmole refers to this osmotic effect of a substance. One mEq. of sodium (23 mg.) exerts 1 mOsm. of pressure. However, 2 mEq. of calcium (40 mg.) also exerts only 1 mOsm. of pressure. Bivalent atoms have a chemical equivalence of 2 but the osmotic force of only 1 particle. Therefore:

$$\frac{\text{mg. \%}}{\text{atomic wt.}} \times 10 = \text{mOsm./L.}$$

By way of review, normal saline has 150 mEq. of sodium. How many milliequivalents of chloride in this solution? The answer is 150 mEq. of chloride, since there is 1 atom of chloride for each atom of sodium. How many milliosmoles of sodium chloride in this solution? The answer would be 300, since there are 150 mOsm. each of sodium and chloride. The osmotic force of this solution would be the effect of both ions combined. Again, if a solution of calcium chloride, CaCl₂, has 150 mEq. of chloride, how many milliequivalents of calcium has it? The answer is 150 mEq. of calcium. How many milliosmoles of CaCl₂? The answer is 225 mOsm. How many milliosmoles of CaCl₂? The answer is 225 mOsm. of CaCl₂ which represents the total of 150 of chloride and 75 of calcium.

FLUID COMPARTMENTS OF THE BODY

In planning therapy for the depleted patient a knowledge of the volumes normally present in the various fluid compartments is of great value and well worth remembering. Since the chemical make-up of fluid is fairly constant, one can often estimate the quantity of electrolyte loss from each compartment if the total fluid loss is known. Loss of 1 L. of cell fluid, for example, will carry with it its dissolved electrolytes and some of the protein.

The body fluids are divided into two major compartments (Fig. 2) and the volumes, expressed as a fraction of the total body weight, are as follows:

The total fluid of the body varies within fairly wide limits depending upon the amount of fatty tissue, which has less water, and of muscular tissue ("lean body mass") which has a greater percentage of water. More accurately speaking the average figure would be about 56 per cent of body weight. In