Second Edition

PYTHON

FOR SCIENTISTS

JOHN M. STEWART

Python for Scientists

Second Edition

JOHN M. STEWART

Department of Applied Mathematics & Theoretical Physics
University of Cambridge

S CAMBRIDGE

% 'p UNIVERSITY PRESS

CAMBRIDGE

UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi — 110002, India
79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781316641231
DOI: 10.1017/9781108120241

© John M. Stewart 2014, 2017

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2014
Second edition 2017

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall
A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Stewart, John, 1943 July 1-

Title: Python for scientists /John M. Stewart, Department of Applied, Mathematics & Theoretical
Physics, University of Cambridge.

Description: Second edition. | Cambridge, United Kingdom ; New York, NY, USA : Cambridge
University Press, [2017] | Includes bibliographical references and index.

« Identifiers: LCCN 2016049298 | ISBN 9781316641231 (paperback)

Subjects: LCSH: Science-Data processing. | Python (Computer program language)

Classification: LCC Q183.9 .5865 2017 | DDC 005.13/3—dc23

LC record available at https://lccn.loc.gov/2016049298

ISBN 978-1-316-64123-1 Paperback
Additional resources for this publication at www.cambridge.org/9781316641231

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such Web sites is, or will remain,
accurate or appropriate.

Python for Scientists
Second Edition

Scientific Python is a significant public domain alternative to expensive proprietary soft-
ware packages. This book teaches from scratch everything the working scientist needs
to know using copious, downloadable, useful and adaptable code snippets. Readers will
discover how easy it is to implement and test non-trivial mathematical algorithms and
will be guided through the many freely available add-on modules. A range of exam-
ples, relevant to many different fields, illustrate the language’s capabilities. The author
also shows how to use pre-existing legacy code (usually in Fortran77) within the Python
environment, thus avoiding the need to master the original code.

In this new edition, several chapters have been rewritten to reflect the /Python note-
book style. With an extended index, an entirely new chapter discussing SymPy and a
substantial increase in the number of code snippets, researchers and research students
will be able to quickly acquire all the skills needed for using Python effectively.

Preface to the Second Edition

The motivation for writing this book, and the acknowledgements of the many who have
assisted in its production, are included in the topics of the Preface to the first edition,
which is reprinted after this one. Here I also need to adjoin thanks to the many readers
who provided constructive criticisms, most of which have been incorporated in this
revision. The purpose here is to explain why a second edition is needed. Superficially it
might appear that very little has changed, apart from a new Chapter 7 which discusses
SymPy, Python’s own computer algebra system.

There is, however, a fundamental change, which permeates most of the latest version
of this book. When the first edition was prepared, the reliable way to use the enhanced
interpreter /Python was via the traditional “terminal mode”. Preparations were under
way for an enhanced “notebook mode”, which looked then rather like the Mathemat-
ica notebook concept, except that it appeared within one’s default web browser.' That
project has now morphed into the Jupyter notebook. The notebook allows one to con-
struct and distribute documents containing computer code (over forty languages are
supported), equations, explanatory text, figures and visualizations. Since this is also
perhaps the easiest software application for a beginner to develop Python experience,
much of the book has been rewritten for the notebook user. In particular there is now
a lightning course on how to use the notebook in Appendix A, and Chapter 2 has been
extensively rewritten to demonstrate its properties. All of the material in the book now
reflects, where appropriate, its use. For example, it allows SymPy to produce algebraic
expressions whose format is unsurpassed by other computer algebra systems.

This change also affects the areas of interactive graphics and visual animations. Their
demands are such that the standard Python two-dimensional graphics package Mat-
plotlib is having difficulty in producing platform-independent results. Indeed, because
of “improved” software upgrades, the code suggested for immediate on-screen anima-
tions in the first edition no longer works. However, the notebook concept has a subtle
solution to resolve this impasse. Recall that the notebook window is your browser win-
dow, which uses modern HTML graphics. The consequent benefits are introduced in
Chapter 6.

As a final enhancement, all but the most trivial code snippets listed in this book are
now available in electronic form, as a notebook of course, but the website includes

! Internet access is neither required nor used.

xii

Preface to the Second Edition

e i T I AN S P R A

HTML and PDF versions, see Section 1.2. The explanatory text surrounding the text is
not included. For that you have to read the book, in hard copy or ebook format!

Note added in proof:

John died shortly after the completion of the Second Edition, and is much missed by
colleagues, friends and family, especially the “Python widow”.

Preface to the First Edition

I have used computers as an aid to scientific research for over 40 years. During that
time, hardware has become cheap, fast and powerful. However, software relevant to the
working scientist has become progressively more complicated. My favourite textbooks
on Fortran90 and C++ run to 1200 and 1600 pages respectively. And then we need doc-
umentation on mathematics libraries and graphics packages. A newcomer going down
this route is going to have to invest significant amounts of time and energy in order to
write useful programmes. This has led to the emergence of “scientific packages™ such
as Matlab® or Mathematica® which avoid the complications of compiled languages,
separate mathematics libraries and graphics packages. I have used them and found them
very convenient for executing the tasks envisaged by their developers. However, I also
found them very difficult to extend beyond these boundaries, and so I looked for alter-
native approaches.

Some years ago, a computer science colleague suggested that I should take a look at
Python. At that time, it was clear that Python had great potential but a very flaky imple-
mentation. It was, however, free and open-source, and was attracting what has turned
out to be a very effective army of developers. More recently, their efforts have coordi-
nated to produce a formidable package consisting of a small core language surrounded
by a wealth of add-on libraries or modules. A select group of these can and do replicate
the facilities of the conventional scientific packages. More importantly an informed, in-
telligent user of Python and its modules can carry out major projects usually entrusted
to dedicated programmers using Fortran, C etc. There is a marginal loss of execution
speed, but this is more than compensated for by the vastly telescoped development time.
The purpose of this book is to explain to working scientists the utility of this relatively
unknown resource.

Most scientists will have some computer familiarity and programming awareness,
although not necessarily with Python, and I shall take advantage of this. Therefore,
unlike many books which set out to “teach™ a language, this one is not just a brisk trot
through the reference manuals. Python has many powerful but unfamiliar facets, and
these need more explanation than the familiar ones. In particular, if you encounter in
this text a reference to the “beginner” or the “unwary”, it signifies a point which is not
made clear in the documentation, and has caught out this author at least once.

The first seven chapters, plus Appendix A, cover almost everything the working sci-
entist needs to know in order to get started in using Python effectively. My editor and
some referees suggested that [should devote the second half of the book to problems in

Xiv

Preface to the First Edition

a particular field. This would have led to a series of books, “Python for Biochemists”,
“Python for Crystallographers”, ..., all with a common first half. Instead I have cho-
sen to cover just three topics, which, however, should be far more widely applicable in
many different fields. Chapter 8 covers four radically different types of ordinary differ-
ential equations and shows how to use the various relevant black boxes, which are often
Python wrappers around tried and trusted Fortran codes. The next chapter while os-
tensibly about pseudospectral approaches to evolutionary partial differential equations,
actually covers a topic of great utility to many scientists, namely how to reuse legacy
code, usually written in Fortran77, within Python at Fortran-like speeds, without under-
standing Fortran. The final chapter about solving very large linear systems via multigrid
is also a case history in how to use object-oriented programming meaningfully in a sci-
entific context. If readers look carefully and critically at these later chapters, they should
gain the practical expertise to handle problems in their own field.

Acknowledgments are due to the many Python developers who have produced and
documented a very useful tool, and also to the very many who have published code
snippets on the web, a great aid to the tyro, such as this author. Many of my colleagues
have offered valuable advice. Des Higham generously consented to my borrowing his
ideas for the last quarter of Chapter 8. I am especially grateful to Oliver Rinne who read
carefully and critically an early draft. At Cambridge University Press, my Production
Editor, Jessica Murphy and my Copy Editor, Anne Rix have exhibited their customary
expertise. Last but not least I thank the Department of Applied Mathematics and Theo-
retical Physics, Cambridge for continuing to offer me office space after my retirement,
which has facilitated the production of this book.

Writing a serious book is not a trivial task and so I am rather more than deeply
grateful for the near-infinite patience of Mary, the “Python-widow”, which made this
book possible!

Contents

Preface to the Second Edition
Preface to the First Edition

Introduction

1.1
1.2
1.3
1.4
1.5

Scientific Software

The Plan of This Book

Can Python Compete with Compiled Languages?
Limitations of This Book

Installing Python and Add-ons

Getting Started with IPython

2.1
2.2
2.3
2.4
2.5

Tab Completion

Introspection

History

Magic Commands

IPython in Action: An Extended Example
2.5.1 An IPython terminal workflow
2.5.2 An IPython notebook workflow

A Short Python Tutorial

3.1
3.2
33

34
3.5

Typing Python

Objects and Identifiers
Numbers

3.3.1 Integers

3.3.2 Real numbers
3.3.3 Boolean numbers
3.3.4 Complex numbers
Namespaces and Modules
Container Objects

3.5.1 Lists

3.5.2 List indexing
3.5.3 Listslicing

3.54 List mutability
3.5.5 Tuples

page xiii
XV

O O 00 B = =

11
11
12
14
14
15
17
17

21
21
22
24
24
24
26
26
27
28
29
30
30
31
32

Vi

Contents

3.6
3.7

39

3.5.6 Strings

3.5.7 Dictionaries

Python if Statements

Loop Constructs

3.7.1 The Python for loop

3.7.2 The Python continue statement

3.7.3 The Python break statement

3.74 List comprehensions

3.7.5 Python while loops

Functions

3.8.1 Syntax and scope

3.8.2 Positional arguments

3.8.3 Keyword arguments

3.8.4 Variable number of positional arguments
3.8.5 Variable number of keyword arguments
3.8.6 Python input/output functions

3.8.7 The Python print function

3.8.8 Anonymous functions

Introduction to Python Classes

3.10 The Structure of Python

3.11 Prime Numbers: A Worked Example
NumPy
4.1 One-Dimensional Arrays
4.1.1 Ab initio constructors
4.1.2 Look-alike constructors
4.1.3 Arithmetical operations on vectors
4.14 Ufuncs
4.1.5 Logical operations on vectors
4.2 Two-Dimensional Arrays
4.2.1 Broadcasting
422 Abinitio constructors
4.2.3 Look-alike constructors
4.2.4 Operations on arrays and ufuncs
43 Higher-Dimensional Arrays
44 Domestic Input and Output
4.4.1 Discursive output and input
442 NumPy text output and input
443 NumPy binary output and input
4.5 Foreign Input and Output
4.5.1 Small amounts of data
452 Large amounts of data
4.6 Miscellaneous Ufuncs

4.6.1 Maxima and minima

33
33
34
35
35
37
37
38
39
39
40
43
43

SEES

47
47
50
51

35
57
57
58
59
60
62
65
65
66
68
69
69
69
70
71
72
73
73
73
74
74

Contents

Vi

4.6.2 Sums and products
4.6.3 Simple statistics
477 Polynomials
4.7.1 Converting data to coefficients
4.7.2 Converting coefficients to data
4.7.3 Manipulating polynomials in coefficient form
4.8 Linear Algebra
4.8.1 Basic operations on matrices
4.8.2 More specialized operations on matrices
4.8.3 Solving linear systems of equations
4.9 More NumPy and Beyond
49.1 SciPy
492 SciKits

Two-Dimensional Graphics
5.1 Introduction
5.2 Getting Started: Simple Figures
5.2.1 Front-ends
5.2.2 Back-ends
5.23 A simple figure
5.2.4 Interactive controls
5.3 Object-Oriented Matplotlib
54 Cartesian Plots
5.4.1 The Marplotlib plot function
54.2 Curve styles
5.4.3 Marker styles
5.4.4 Axes, grid, labels and title
5.4.5 A not-so-simple example: partial sums of Fourier series
5.5 Polar Plots
5.6 Error Bars
5.7 Textand Annotations
5.8 Displaying Mathematical Formulae
5.8.1 Non-I#TEX users
5.82 IKIEX users
5.8.3 Alternatives for ISTEX users
5.9 Contour Plots
5.10 Compound Figures
5.10.1 Multiple figures
5.10.2 Multiple plots
5.11 Mandelbrot Sets: A Worked Example

Multi-Dimensional Graphics
6.1 Introduction
6.1.1 Multi-dimensional data sets

75
75
75
76
76
76
76
76
78
79
79
30
31

82
82
83
83
83
84
86
87
88
88
89
90
90
91
93
94
95
96
96
97
98
98
101
101
102
104

109
109
109

viii

Contents

- T 5 R — st AT

6.2 The Reduction to Two Dimensions
6.3 Visualization Software
6.4 Example Visualization Tasks
6.5 Visualization of Solitary Waves
6.5.1 The interactivity task
6.5.2 The animation task
6.5.3 The movie task
6.6 Visualization of Three-Dimensional Objects
6.7 A Three-Dimensional Curve
6.7.1 Visualizing the curve with mplot3d
6.7.2 Visualizing the curve with mlab
6.8 A Simple Surface
6.8.1 Visualizing the simple surface with mplot3d
6.8.2 Visualizing the simple surface with mlab
6.9 A Parametrically Defined Surface
6.9.1 Visualizing Enneper’s surface using mplot3d
6.9.2 Visualizing Enneper’s surface using mlab
6.10 Three-Dimensional Visualization of a Julia Set

SymPy: A Computer Algebra System
7.1 Computer Algebra Systems
7.2 Symbols and Functions
7.3 Conversions from Python to SymPy and Vice Versa
7.4 Matrices and Vectors
7.5 Some Elementary Calculus
7.5.1 Differentiation
7.5.2 Integration
7.5.3 Series and limits
7.6 Equality, Symbolic Equality and Simplification
7.7 Solving Equations
7.7.1 Equations with one independent variable
7.7.2 Linear equations with more than one independent variable
7.7.3 More general equations
7.8 Solving Ordinary Differential Equations
7.9 Plotting from within SymPy

Ordinary Differential Equations

8.1 Initial Value Problems

8.2 Basic Concepts

8.3 The odeint Function
8.3.1 Theoretical background
8.3.2 The harmonic oscillator
8.3.3 The van der Pol oscillator
8.3.4 The Lorenz equations

109
110
111
111
112
113
115
116
118
118
120
121
121
123
124
124
125
126

129
129
130
132
133
134
134
134
136
136
138
138
139
141
142
144

150
150
150
153
153
155
158
159

10

8.4

8.5

8.6

Contents

Two-Point Boundary Value Problems

8.4.1 Introduction

8.4.2 Formulation of the boundary value problem

8.4.3 A simple example

8.4.4 A linear eigenvalue problem

8.4.5 A non-linear boundary value problem

Delay Differential Equations

85.1 A model equation

8.5.2 More general equations and their numerical solution
8.5.3 The logistic equation

8.5.4 The Mackey-Glass equation

Stochastic Differential Equations

8.6.1 The Wiener process

8.6.2 The It6 calculus

8.6.3 Ito and Stratonovich stochastic integrals

8.6.4 Numerical solution of stochastic differential equations

Partial Differential Equations: A Pseudospectral Approach

9.1
9.2
93
9.4
9.5
9.6
9.7

9.8
9.9

Initial Boundary Value Problems

Method of Lines

Spatial Derivatives via Finite Differencing

Spatial Derivatives by Spectral Techniques

The IVP for Spatially Periodic Problems

Spectral Techniques for Non-Periodic Problems

An Introduction to £2py

9.7.1 Simple examples with scalar arguments

9.72 Vector arguments

9.7.3 A simple example with multi-dimensional arguments
9.7.4 Undiscussed features of £2py

A Real-Life £2py Example

Worked Example: Burgers’ Equation

9.9.1 Boundary conditions: the traditional approach
9.9.2 Boundary conditions: the penalty approach

Case Study: Multigrid

10.1

10.2

10.3

The One-Dimensional Case

10.1.1 Linear elliptic equations
10.1.2 Smooth and rough modes
The Tools of Multigrid

10.2.1 Relaxation methods

10.2.2 Residual and error

10.2.3 Prolongation and restriction
Multigrid Schemes

10.3.1 The two-grid algorithm

ix

161
161
162
164
165
167
171
172
173
174
176
179
179
181
184
185

192
192
193
193
194
196
199
201
201
203
204
206
206
208
208
209

213
214
214
215
215
215
218
219
220
221

X Contents

10.3.2 The V-cycle scheme

10.3.3 The full multigrid (FMG) scheme
10.4 A Simple Python Multigrid Implementation

10.4.1 Utility functions

10.4.2 Smoothing functions

10.4.3 Multigrid functions

Appendix A Installing a Python Environment

A.1 Installing Python Packages

A.2 Communication with /Python Using the Jupyter Notebook
A.2.1 Starting and stopping the notebook
A.2.2 Working in the notebook

A2.2.1 Entering headers

A222 Entering Markdown text

A223 Converting notebooks to other formats

A.3 Communication with /Python Using Terminal Mode
A.3.1 Editors for programming
A.3.2 The two-windows approach
A.3.3 Calling the editor from within /Python
A.34 Calling [Python from within the editor

A4 Communication with [Python via an IDE

A.5 Installing Additional Packages

Appendix B Fortran77 Subroutines for Pseudospectral Methods
References
Hints for Using the Index

Index

222
223
224
225
226
228

235
235
237
237
238
239
239
240
240
240
241
242
242
242
243

244

250

252

253

1.1

Inztr_oduction

The title of this book is “Python for Scientists™, but what does that mean? The dictio-
nary defines “Python” as either (a) a non-venomous snake from Asia or Saharan Africa
or (b) a computer scripting language, and it is the second option which is intended here.
(What exactly this second definition means will be explained later.) By “scientist™, I
mean anyone who uses quantitative models either to obtain conclusions by processing
pre-collected experimental data or to model potentially observable results from a more
abstract theory, and who asks “what if?”. What if I analyse the data in a different way?
What if I change the model? Thus the term also includes economists, engineers and
mathematicians among others, as well as the usual concept of scientists. Given the vol-
ume of potential data or the complexity (non-linearity) of many theoretical models, the
use of computers to answer these questions is fast becoming mandatory.

Advances in computer hardware mean that immense amounts of data or ever more
complex models can be processed at increasingly rapid speeds. These advances also
mean reduced costs so that today virtually every scientist has access to a “personal
computer”, either a desktop work station or a laptop, and the distinction between the
two is narrowing quickly. It might seem to be a given that suitable software will also be
available so that the “what if” questions can be answered readily. However, this turns
out not always to be the case. A quick pragmatic reason is that, while there is a huge
market for hardware improvements, scientists form a very small fraction of it and so
there is little financial incentive to improve scientific software. But for scientists, this
issue is important and we need to examine it in more detail.

Scientific Software

Before we discuss what is available, it is important to note that all computer software
comes in one of two types: proprietary and open-source, The first is supplied by a com-
mercial firm. Such organizations have both to pay wages and taxes and to provide a re-
turn for their shareholders. Therefore, they have to charge real money for their products,
and, in order to protect their assets from their competitors, they do not tell the customer
how their software works. Thus, the end-users have little chance of being able to adapt
or optimize the product for their own use. Since wages and taxes are recurrent expendi-
tures, the company needs to issue frequent charged-for updates and improvements (the
Danegeld effect). Open-source software is available for free or at nominal cost (media,

Introduction

postage etc.). It is usually developed by computer literate individuals, often working
for universities or similar organizations, who provide the service for their colleagues. It
is distributed subject to anti-copyright licences, which give nobody the right to copy-
right it or to use it for commercial gain. Conventional economics might suggest that
the gamut of open-source software should be inferior to its proprietary counterpart, or
else the commercial organizations would lose their market. As we shall see, this is not
necessarily the case.

Next we need to differentiate between two different types of scientific software. Com-
puters operate according to a very limited and obscure set of instructions. A program-
ming language is a somewhat less limited subset of human language in which sequences
of instructions are written, usually by humans, to be read and understood by computers.
The most common languages are capable of expressing very sophisticated mathematical
concepts, albeit with a steep learning curve. Only a few language families, e.g., C and
Fortran, have been widely accepted, but they come with many different dialects, e.g.,
Fortran77, Fortran90, Ansi C, C++ etc. Compilers then translate code written by humans
into machine code which can be optimized for speed and then processed. As such, they
are rather like Formula 1 racing cars. The best of them are capable of breathtakingly fast
performance, but driving them is not intuitive and requires a great deal of training and
experience. Note that compilers need to be supplemented by libraries of software pack-
ages which implement frequently used numerical algorithms, and graphics packages
will usually be needed. Fast versatile library packages are usually expensive, although
good public domain packages are starting to appear.

A racing car is not usually the best choice for a trip to the supermarket, where speed
is not of paramount importance. Similarly, compiled languages are not always ideal for
trying out new mathematical ideas. Thus for the intended readers of this book the direct
use of compilers is likely to be unattractive, unless their use is mandatory. We there-
fore look at the other type of software, usually called “scientific packages”. Proprietary
packages include Mathematica and Matlab, and open-source equivalents include Max-
ima, Octave, R and SciLab. They all operate in a similar fashion. Each provides its own
idiosyncratic programming language in which problems are entered at a user interface.
After a coherent group of statements, often just an individual statement, has been typed,
the package writes equivalent core language code and compiles it on the fly. Thus errors
and/or results can be reported immediately back to the user. Such packages are called
“interpreters”, and older readers may remember, perhaps with mixed feelings, the BA-
SIC language. For small projects, the slow operation compared with a fully compiled
code is masked by the speed of current microprocessors, but it does become apparent
on larger jobs.

These packages are attractive for at least two reasons. The first is their ability to post-
process data. For example, suppose that x is a real variable and there exists a (possibly
unknown) function y(x). Suppose also that for an ordered set X of discrete instances of
x we have computed a corresponding set Y of instances of y. Then a command similar to
plot(X,Y) will display instantly a nicely formatted graph on the screen. Indeed, those
generated by Matlab in particular can be of publication quality. A second advantage is
the apparent ability of some of the proprietary packages to perform in addition some

